Изобретение относится к приборостроению и может быть использовано для измерения давления, температуры, напряженности магнитного поля в исследуемой среде. Цель: повышение чувствительности и точности измерений. Сущность изобретения: в способе, включающем возбуждение колебаний в среде, измерение характеристик колебательного процесса и определение по ним величины искомого параметра, колебания возбуждают в элементе эталонной среды, находят зависимость одной из характеристик колебательного процесса от определяемого параметра, обеспечивают контакт элемента эталонной среды с исследуемой средой, вновь возбуждают колебания в элементе эталонной среды, а величину искомого параметра состояния исследуемой среды устанавливают по изменению характеристики колебательного процесса в элементе эталонной среды. Колебания используют модулированные, ультразвуковые, гиперзвуковые, электромагнитные, СВЧ. В качестве измеряемых характеристик используют резонансную частоту, добротность, скорость прохождения или коэффициент поглощения колебаний, частоту релаксаций эталонной среды. В качестве эталонной среды используют жидкую, магнитореологическую, либо электрореологическую среду. Для реализации способа используют два пьезоэлектрических преобразователя на торцах пустотелого корпуса, заполненного эталонной жидкостью, изолированной от исследуемой эластичной перегородкой. Положительный эффект: повышение точности измерений и расширение диапазона измеряемых величин. 12 з.п. ф-лы, 4 ил.
Изобретение относится к способам определения физических параметров среды и может быть использовано для определения давления, напряженности магнитного поля и ЭДС электромагнитного поля.
Целью изобретения является повышение чувствительности и точности определения искомого параметра.
На фиг.1 показано устройство для реализации способа с жидкой эталонной средой; на фиг.2 - вариант блок-схемы устройства; на фиг.3 - устройство для реализации способа с использованием СВЧ-электромагнитных колебаний; на фиг. 4 - устройство с четырьмя резонаторными ультразвуковыми ячейками в одном корпусе.
Определение параметров состояния среды (давления) по данному способу осуществляется с использованием устройства, показанного на фиг.1, и блок-схемы на фиг.2.
Устройство (фиг.1) содержит два пьезокристаллических преобразователя 1, расположенных параллельно друг другу на торцах пустотелого корпуса 2, заполненного эталонной жидкостью 3 и изолированной от внешней среды эластичной перегородкой 4.
Высокочастотное напряжение от генератора 5 (фиг.2) питает излучающий преобразователь 1, с помощью которого возбуждают ультразвуковые волны в дистиллированной воде 3, заполняющей устройство. Упругие волны преобразуются в электрические колебания приемным преобразователем 1а, усиливаются линейным усилителем 9 и поступают на один из входов фазового детектора 8. На другой вход фазового детектора 8 подают сигнал от генератора 5, прошедший через фазовращатели 6 и 7. С выхода фазового детектора 8 сигнал, пропорциональный разности фаз входных сигналов, поступает на управляющий вход генератора 5 как сигнал отрицательной обратной связи. Таким образом, устройство автоматически находится в режиме работы, соответствующем нулевой разности фаз входных сигналов фазового детектора 8. По сигналам таймера 12 с периодом в 1с дискретный фазовращатель 6 генерирует скачки фазы, равные

/2. Амплитуды усиленного линейным усилителем 9 высокочастотного напряжения, соответствующего различным состояниям дискретного фазовращателя 6, детектируются амплитудным детектором 13 и фиксируются на соответствующих входах дифференциального усилителя 16 при помощи коммутатора 14 и фиксатора 15 уровня. Коммутатор 14 и фиксатор 15 уровня управляются сигналами таймера 12. С выхода дифференциального усилителя 16 напряжение в качестве сигнала отрицательной обратной связи подают на управляющий вход аналогового фазовращателя 7. Аналоговый фазовращатель 7 настраивают таким образом, чтобы входное напряжение дифференциального усилителя 16 равнялось нулю. Среднее арифметическое частот, соответствующих двум состояниям дискретного фазовращателя, измеряемое частотомером 10, равно центральной частоте f
n резонансного пика амплитудно-частотной характеристики (АЧХ) резонаторного устройства. Находят зависимость f
n от определяемого параметра состояния среды (в данном случае - давления).
Для этого устройство (фиг.1) помещают в сосуд, заполненный, например, газом, через который передается давление на элемент эталонной среды, и определяют зависимость резонансной частоты и добротности от давления или степени разрежения, если устройство нужно использовать как вакуумметр. После того, как найдена зависимость акустических характеристик от требуемых параметров состояния для выбранной (смоделированной) эталонной жидкости, в данном случае - воды, устройство используют как датчик давления.
Например, устройство помещают в сосуд высокого давления, содержащий газовый конденсат, в котором необходимо определить давление. Измеряют f
nи по ее значению определяют искомое давление, которое передается эталонной среде через эластичную перегородку 4.
Рассмотрим пример реализации способа для определения напряженности магнитного поля с использованием того же устройства (фиг.1, 2). Указанное устройство заполняют магнитореологической жидкостью 3. Подают высокочастотное напряжение от генератора 5 на излучающий преобразователь 1, с помощью которого ультразвуковые волны возбуждают в магнитореологической жидкости. Далее автоматическая система слежения работает аналогично описанному выше и среднее арифметическое частот, соответствующих двум состояниям дискретного фазовращателя 6 (измеряют частотомером 10), равно центральной частоте f
n резонансного пика АЧХ. Разность частот, соответствующая двум состояниям дискретного фазовращателя 6, измеряемая измерителем 11 девиации частоты, равна ширине резонансного пика

f
n, пропорционального коэффициенту поглощения ультразвука в резонаторе

:

=

=

где

- длина волны; Q - добротность резонатора; n - номер резонансного пика.
Устройство помещают в магнитное поле, реакция на напряженность которого Н магнитореологической жидкости проявляется в измерении коэффициента поглощения ультразвука

. После установления функциональной связи поглощения

с напряженностью магнитного поля устройство, например, размещают внутри витка, по которому течет электрический ток (напряженность магнитного поля в центре витка с током H = I/2r, где I - сила тока в проводнике; r - радиус витка), и определяют напряженность магнитного поля.
Аналогично с помощью описанного устройства находят скорость ультразвука v в среде, заполняющей резонатор, которая связана с частотой n-го резонансного пика f
n выражением V = 2l

, где l - длина акустического пути. По зависимости скорости ультразвука от определяемого параметра состояния находят его значение в исследуемой среде.
Заметим, что возбуждение упругих колебаний в среде с использованием устройства, изображенного на фиг.1, возможно и с другими электронными схемами (в том числе описанными, например в источнике: Колесников А.Е. Ультразвуковые измерения М.: Стандарты, 1982).
С помощью устройства на фиг.1 одновременно определяют (контролируют) давление и температуру в исследуемой среде. Для этого ячейку в корпусе между пьезокристаллами заполняют жидкостью с внутримолекулярным процессом релаксации, например с поворотноизомерной релаксацией, возбуждают в образованном элементе эталонной среды ультразвуковые колебания и по смещению частоты релаксации (определяют по значениям коэффициента поглощения ультразвука), находят значения температуры, а по значениям скорости ультразвука - давление.
Если необходимо определить температуру металлической пверхности, элемент эталонной среды выполняют из материала с хорошей теплопроводностью, например меди, теплоизолируют его от внешней среды, например, путем напыления на поверхности элемента полиуретана, возбуждают в элементе колебания и находят зависимость их характеристик от температуры. Затем обеспечивают контакт элемента с поверхностью металла, выдерживают в течение времени, пока не стабилизируются значения характеристик колебательного процесса, и по их значениям определяют температуру.
В случае использования СВЧ-колебаний способ может быть реализован с помощью устройства, изображенного на фиг.3, где 17 - диэлектрический капилляр, 3 - эталонная жидкая среда, 4 - эластичные перегородки, 18 - втулки, 19 - волновод. Аналогично предыдущим примерам находят зависимость резонансной частоты и добротности СВЧ-колебаний (или диэлектрической проницаемости и коэффициента поглощения электромагнитного поля) для эталонной жидкой среды. Затем устройство помещают в среду, в которой необходимо определить, например, давление. При воздействии внешней среды на эластичные перегородки будут изменяться резонансная частота и добротность и по измерениям сдвига резонансной частоты и/или измерения амплитуды резонанса судят о величине давления в исследуемой среде.
Возбуждение электромагнитных СВЧ-колебаний для определения параметров состояния, например, оптимально для случаев измерения свойств сред с использольванием СВЧ-методов, так как для разных измерений применяют одну и ту же контрольно-измерительную аппаратуру.
Определение параметров состояния по предлагаемому способу дает возможность использовать одну контрольно-измерительную аппаратуру одновременно и для определения других свойств среды ультразвуковыми методами. Это позволяет добиться оптимальных условий при измерениях.
В этом случае можно воспользоваться устройством, приведенным на фиг.4. В корпусе 2 выполнены четыре отверстия 20, образующие с пьезокристаллами 1 измерительные камеры. Конструкция скреплена элементами 21 - 24. Например, если исследуют водные растворы аминокислот при высоких давлениях, одну из камер заполняют дистиллированной водой, а три другие - растворами аминокислот различной концентрации. Камеры изолируют от внешней среды эластичной перегородкой 4 и устройство помещают в термостатируемый сосуд высокого давления (не показано). Через электровводы высокого давления (не показаны) контактные электроды 25 соединяют с контрольно-измерительной аппаратурой, например, по схеме фиг.2. Колебания во всех камерах возбуждаются одним и тем же кристаллом. По данным акустических измерений в камере с дистиллированной водой определяют давление, а по данным всех четырех камер определяют концентрационную зависимость адиабатической сжимаемости и нелинейного параметра.
Предлагаемый способ обеспечивает высокие точность и чувствительность, позволяет достичь оптимальных условий при измерениях свойств сред, использовать один комплект контрольно-измерительной аппаратуры при комплексных исследованиях, определять одновременно несколько параметров состояния, например давления и температуры, проводить измерения в широкой области изменений параметров состояния, в том числе от значений давления, соответствующих глубокому вакууму, до сверхвысоких давлений. Реализуя способ, можно создавать устройства, минимизируя размеры измерительных камер. Это существенно снижает металлоемкость устройств, повышает безопасность эксплуатации при высоких и сверхвысоких давлениях.
Формула изобретения
1. СПОСОБ ОПРЕДЕЛЕНИЯ ФИЗИЧЕСКИХ ПАРАМЕТРОВ СОСТОЯНИЯ СРЕДЫ, включающий возбуждение колебаний в среде, измерение характеристик колебательного процесса и определение по ним величины искомого параметра, отличающийся тем, что, с целью повышения чувствительности и точности определения искомого параметра, колебания возбуждают в элементе эталонной среды, находят зависимость по крайней мере одного из характеристик колебательного процесса от определяемого параметра, обеспечивают контакт элемента эталонной среды с исследуемой средой, вновь возбуждают колебания в элементе эталонной среды, а величину искомого параметра состояния исследуемой среды устанавливают по изменению характеристики колебательного процесса в элементе эталонной среды.
2. Способ по п.1, отличающийся тем, что возбуждают модулированные колебания.
3. Способ по пп. 1 и 2, отличающийся тем, что в качестве измеряемых характеристик колебательного процесса используют резонансную частоту и/или добротность.
4. Способ по пп.1 и 2, отличающийся тем, что в качестве измеряемых характеристик колебательного процесса используют скорость распространения и/или коэффициент поглощения колебаний в элементе эталонной среды.
5. Способ по п.1, отличающийся тем, что находят частоту релаксации эталонной среды, а параметры состояния исследуемой среды определяют по смещению релаксационной частоты.
6. Способ по пп.1 - 5, отличающийся тем, что в элементе эталонной среды возбуждают ультразвуковые колебания.
7. Способ по пп. 1 - 5, отличающийся тем, что в элементе эталонной среды возбуждают гиперзвуковые колебания.
8. Способ по пп. 1 - 5, отличающийся тем, что в элементе эталонной среды возбуждают электромагнитные СВЧ-колебания.
9. Способ по пп.1 - 8, отличающийся тем, что в качестве эталонной среды используют жидкую среду, соответствующую по физическим параметрам исследуемой среде.
10. Способ по пп.1 -9, отличающийся тем, что в качестве эталонной среды используют магнитореологическую среду.
11. Способ по пп. 1 - 10, отличающийся тем, что в качестве эталонной среды используют электрореологическую среду.
12. Способ по пп.1 - 11, отличающийся тем, что эталонную среду подбирают и/или моделируют с линейной зависимостью скорости распространения колебаний от температуры.
13. Способ по пп.1 - 12, отличающийся тем, что эталонную среду подбирают и/или моделируют с линейной зависимостью модуля упругости от давления.
РИСУНКИ
Рисунок 1,
Рисунок 2,
Рисунок 3,
Рисунок 4