Способ получения водорастворимого катионного полимерного флокулянта
Использование: получение водорастворимых разветвленных высокомолекулярных полимерных флокулянтов, способных проявить полностью свой потенциал без сдвиговой деформации. Сущность изобретения: полимеризация катионного водорастворимого мономера с двойной связью или его сополимеризация с неионным мономером с двойной связью в присутствии разветвляющего соединения в количестве 4 80 мол.ч. на миллион в пересчете на начальное содержание мономеров с двойной связью. Полимеризацию проводят в присутствии переносчика кинетической цепи, взятого в количестве, обеспечивающем коэффициент растворимости полученного сополимера выше 30% 2 з.п. ф-лы, 7 табл.
Изобретение относится к неподвергающимся сдвиговой деформации высокомолекулярным высокоразветвленным водорастворимым полимерам, более конкретно к способу получения таких полимеров, применяемых в качестве флокулянтов.
Осаждение в виде хлопьев (флокуляция) является одной из форм разделения жидкой и твердой фаз, способствующей удалению мельчайших частиц из жидкости путем агломерации суспендированных частиц с увеличением их размеров, и она часто используется для придания отходящему потоку требуемой прозрачности. Флокуляция может быть осуществлена с помощью химических средств, например добавлением флокулянта. Синтетические органические полимерные флокулянты нашли применение в промышленности уже в 50-х годах. Специалистами отмечено, что особо полезными в качестве флокулянтов являются высокомолекулярные полимеры, растворимые в воде. Специалистам известны многие водорастворимые высокомолекулярные полимерные флокулянты. С некоторым успехом для обработки избыточного ила в качестве флокулянтов использовались линейные водорастворимые полимеры. Однако современный подход к охране окружающей среды, стоимость сжигания и транспортировки ила настоятельно требуют улучшения эффективности обычных линейных флокулянтов и создания флокулянтов, обеспечивающих образование кека с большим содержанием твердых частиц. Известен способ получения таких флокулянтов с применением сдвиговой деформации сшитых полимерных цепей с целью достижения необходимой растворимости в воде [1] В этом способе применяется сдвиговая деформация полимерного геля, нерастворимого в воде, с его физическим разрушением до такой степени, что он становится водорастворимым. Рекомендуемый способ разрушения относится к механическому типу, например, действием лопастей на разбавленные растворы полимера, вращающихся со скоростью до 20000 об/мин. Разрушение, как заявлено, улучшает флокуляционную способность за счет повышения эффективной ионности полимера. Рост эффективной ионности характеризуют количественно измерением роста ионности (РИ) РИ (ИПР ИДР)/ИПР х 100, где ИПР ионность после разрушения и ИДР ионность до разрушения. Ионность может быть определена коллоидным титрованием, описанным в том же патенте. Рост ионности полимера должен достигать 15-70% поскольку полимеры со слишком низким значением РИ не дают должного результата. Известен также способ получения водорастворимого катионного полимерного флокулянта полимеризацией катионного водорастворимого мономера с двойной связью или его сополимеризацией с неионным мономером с двойной связью в присутствии разветвляющего соединения [2] В известном способе указано на необходимость подвергать сдвиговой деформации полученные сшитые полимеры (которые в противном случае могут иметь слабые флокулирующие свойства) в формы, обладающие очень хорошими флокулирующими свойствами. Необходима сдвиговая деформация, при которой полимер получает значение роста ионности по меньшей мере 15% предпочтительно по меньшей мере 30-50% Найдено, что высокомолекулярные высокоразветвленные водорастворимые полимерные флокулянты могут быть получены без использования сдвиговой деформации и их флокулирующая способность не зависит от значений роста ионности. Полимерные флокулянты, полученные способом настоящего изобретения, подвергают только минимальной сдвиговой деформации, достаточной лишь для того, чтобы вызвать солюбилизацию полимера при отсутствии разрушения или незначительном его разрушении. Кроме того, неионные и катионные полимерные флокулянты настоящего изобретения имеют значения РИ в интервале от 0 до 70% так что улучшенная эффективность этих полимеров не возрастает за счет повышения эффективной ионности, напротив они проявляют себя также хорошо при значениях ионности, охватываемых известным уровнем техники, а также и в отсутствии ионности. Полимерные флокулянты настоящего изобретения превосходят флокулянты известного уровня техники, создавая в кеке высокое содержание твердых веществ часто при более низких собственных концентрациях. Помимо этого полимерные флокулянты настоящего изобретения и их смеси более удобны и более дешевы в употреблении по сравнению с флокулянтами известного уровня техники, требующими со стороны потребителя применения перед употреблением оборудования для создания сдвиговой деформации с целью достижения необходимого оптимального флокулирующего действия, что повышает время и стоимость операции. Предлагаемое изобретение позволяет получать истинные водорастворимые высокоразветвленные высокомолекулярные полимеры, оказывающиеся особенно полезными в качестве химических флокулянтов. Полимеры настоящего изобретения получают применением разветвляющего средства в присутствии переносчика кинетической цепи с получением высокоразветвленного и водорастворимого продукта. Кроме того, полимеры изобретения не требуют применения регулируемой сдвиговой деформации для достижения оптимальной эффективности, что снижает их стоимость. Настоящее изобретение, как найдено, особенно применимо в случае использования разветвленных сополимеров, включающих акриламид и по меньшей мере один анионный, катионный или неионный мономер с двойной связью. Настоящим изобретением предлагается способ получения водорастворимого катионного полимерного флокулянта полимеризацией катионного водорастворимого мономера с двойной связью или его сополимеризацией с неионным мономером с двойной связью в присутствии разветвляющего соединения, отличающийся тем, что разветвляющее соединение используют в количестве 4-80 мол.ч. на миллион в пересчете на начальное содержание мономеров с двойной связью, и сополимеризацию проводят в присутствии переносчика кинетической цепи, взятого в количестве, обеспечивающем коэффициент растворимости полученного сополимера выше 30% В качестве неионного водорастворимого мономера с двойной связью используют соединение, выбранное из группы, содержащей акриламид, метакриламид, N-алкилакриламид, N, N-диалкилакриламид, N-винилметилацетамид, N-винилметилформамид, винилацетат, N-винилпирролидон. В качестве катионного мономера с двойной связью используют соединение, выбранное из группы, содержащей N,N-диалкиламиноалкил(мет)-акрилаты, их соли или четвертичные аммониевые соединения, N,N-диалкиламиноалкил(мет)акриламиды, их соли или четвертичные аммониевые соединения. Для получения высокоразветвленного водорастворимого продукта чрезвычайно важно применение переносчика кинетической цепи в оптимальной концентрации. При добавлении переносчика кинетической цепи в очень небольших количествах образуется нерастворимый полимерный продукт, а при избытке переносчика кинетической цепи образуется продукт со слишком низкой вязкостью в растворе, т. е. низкой молекулярной массой. В случае катионных полимеров потимальное содержание переносчика кинетической цепи определяют измерением коэффициента растворимости. В настоящем изобретении коэффициент растворимости определяется как общий мольный катионности полимера, определенный способом связывания аниона (CEG), например коллоидным титрованием, деленный на общую катионность, определенную анилитическим способом, не зависящим от связывания аниона, например, с помощью ядерного магнитного резонанса, инфракрасной спектроскопией или химическим анализом, частное от деления умножают на 100. Катионность определяют измерением CEG так, как описано в Journal of Chemical Education, т. 62, N 7, 1985, с. 627-629, при этом определяют катионность раствора с помощью коллоидного титрования с целью определения растворимости в воде. Применение переносчика кинетической цепи в концентрации, при которой коэффициент растворимости меньше 30% приводит к нерастворимым продуктам. Только в случае использования оптимальных концентраций, обеспечивающих коэффициент растворимости выше 30% полимеры обладают требуемыми показателями растворимости. Таким образом, растворимые катионные полимеры изобретения во всех случаях имеют минимальный коэффициент растворимости выше 30% предпочтительно выше 40% и наиболее предпочтительно выше 50% Многие полимеры имеют коэффициент растворимости выше 90% Полимеризация на практике может быть осуществлена полимеризацией в геле или полимеризацией в эмульсии (суспензии). Полимеризация в эмульсии включает приготовление двух фаз. Водная фаза содержит мономер(ы), разветвляющее средство и переносчик кинетической цепи в растворе деионизированной воды, а также и другие хорошо известные добавки, такие как стабилизаторы и регуляторы рН. Масляная фаза представляет собой нерастворимый в воде раствор поверхностно-активных веществ-(а) в углеводороде. Водную и масляную фазы затем смешивают и гомогенизируют в обычном оборудовании до получения частиц размером около 1 мкм и достижения необходимой вязкости всей массы. Затем эмульсию переносят в приемлемый сосуд, в котором эмульсию перемешивают и продувают около 30 мин азотом. Чтобы начать полимеризацию в раствор затем непрерывно добавляют инициатор полимеризации, такой как метабисульфит натрия. Температуру полимеризации повышают за счет собственного тепла до необходимого уровня и поддерживают на этом уровне путем охлаждения до момента, когда охлаждение больше не требуется. Конечный эмульсионный продукт охлаждают до 25оС. По обычной методике полимеризации в геле мономер(ы), разветвляющее средство и переносчик кинетической цепи растворяют в деионизированной воде и устанавливают необходимое значение рН. Раствор помещают в полимеризационный сосуд и при температуре около 6оС раствор продувают азотом. Затем добавляют инициатор с повышением температуры за счет тепла полимеризации до максимального значения. По достижении максимальной температуры смесь помещают примерно на 8 ч в печь при 70оС. Полученный гель размельчают в гранулы, сушат на воздухе и размельчают в порошок. Для стабилизации водной и масляной фаз могут быть использованы любые обычные добавки. Приемлемые добавки включают сульфат аммония, этилендиаминотетрауксусную кислоту (динатриевая соль) и диэтилентриаминопентаацетат (пентанатриевая соль). Чтобы начать полимеризацию, могут быть использованы любые известные инициаторы. Для настоящего изобретения приемлемы в качестве инициаторов азобисизобутиронитрил, сульфит натрия, метабисульфит натрия, 2,2'-азобис(2-метил-2-амидинопропан) дихлоргидрат, персульфат аммония, гексагидрат железа (II), аммонийсульфат и т.п. Для полимеризации содержащих двойную связь мономеров могут быть применены органические перекиси. В настоящем изобретении особенно полезной оказывается гидроперекись трет-бутила. Полученный в результате продукт представляет собой не подвергающийся сдвиговой деформации высокомолекулярный высокоразветвленный водорастворимый катионный полимер, применимый в качестве химического флокулянта и не требующий использования регулируемой сдвиговой деформации для достижения оптимальной эффективности. Стадии флокуляции и обезвоживания с целью отделения воды от дисперсии суспендированных твердых веществ проводят добавлением к суспензии раствора, не подвергавшегося сдвиговой деформации высокомолекулярного водорастворимого катионного полимерного флокулянта, после чего в обычном оборудовании для отделения воды отделяют воду от суспензии с получением кристально прозрачного отходящего потока. Продукты настоящего изобретения применимы в самых различных операциях по разделению твердых веществ и жидкости с оптимизацией таких операций. Полимерные флокулянты могут быть применены для обезвоживания суспендированных твердых веществ и других промышленных осадков, для осушения целлюлозных суспензий, например, получаемых в производстве бумаги, а также для отстоя различных неорганических суспензий. Ниже следуют примеры, иллюстрирующие изобретение. П р и м е р ы 1-9. Катионный акриламидный полимер получают полимеризацией эмульсии. Водную фазу готовят растворением 87 г продажного кристаллического мономерного акриламида, 210,7 г 75%-ного акрилоксиэтилтриметиламмонийхлорида, 4,1 г сульфата аммония, 4,9 г 5%-ной этилендиаминотетрауксусной кислоты (динатриевая соль), 3,68 г 1,5%-ного 2-пропанола в качестве переносчика кинетической цепи, 1 г 0,245%-ного (10 ч./млн.) метиленбисакриламида в качестве разветвляющего средства (пример 5В) и 2,56 г гидроперекиси трет-бутила в качестве инициатора полимеризации в 189,3 г деионизированной воды. Добавлением серной кислоты устанавливают рН 3,5 (



Формула изобретения
1. СПОСОБ ПОЛУЧЕНИЯ ВОДОРАСТВОРИМОГО КАТИОННОГО ПОЛИМЕРНОГО ФЛОКУЛЯНТА полимеризацией катионного водорастворимого мономера с двойной связью или его сополимеризацией неионным мономером с двойной связью в присутствии разветвляющего соединения, отличающийся тем, что разветвляющее соединение используют в количестве 4 80 мол.ч. на миллион в пересчете на начальное содержание мономеров с двойной связью и сополимеризацию проводят в присутствии переносчика кинетической цепи, взятого в количестве, обеспечивающем коэффициент растворимости полученного сополимера выше 30% 2. Способ по п.1, отличающийся тем, что в качестве неионного водорастворимого мономера с двойной связью используют соединение, выбранное из группы, содержащей акриламид, метакриламид, N-алкилакриламид, N,N-диалкилакриламид, N-винилметилацетамид, N-винилметилформамид, винилацетат, N-винилпирролидон. 3. Способ по п.1, отличающийся тем, что в качестве катионного мономера с двойной связью используют соединение, выбранное из группы, содержащей N,N-диалкиламиноалкил(мет)акрилаты, их соли или четвертичные аммониевые соединения, N,N-диалкиламиноалкил(мет)акриламиды, их соли или четвертичные аммониевые соединения.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4, Рисунок 5, Рисунок 6