Акустический способ определения амплитуд пульсационных скоростей потока жидкости или газа

 

Использование: в измерительной технике для определения параметров пульсационных скоростей потоков жидкостей или газов. Сущность изобретения: способ основан на использовании эффекта, заключающегося в нелинейном взаимодействии гидродинамического поля со слабыми акустическими волнами. В результате такого взаимодействия происходит искажение амплитудно-фазовых характеристик акустического сигнала, несущих информацию о пульсациях скорости потока. С помощью акустических колебаний на несущей частоте с волновым числом Ka облучают поток жидкости сначала без пульсационных скоростей и измеряют уровень звукового давления акустических колебаний. Затем измеряют уровень звукового давления акустических колебаний на различных спектральных составляющих пульсационных скоростей потока. Для этого проводят демодуляцию и спектральный анализ выходного сигнала акустического приемника, установленного в поле акустической волны и в гидродинамическом поле. Амплитуды пульсационных скоростей на каждой спектральной составляющей определяют из математического выражения, приведенного в описании. 1 ил.

Изобретение относится к измерительной технике и может быть использовано для определения параметров пульсационных скоростей потоков жидкостей и газов.

Известны способы аналогичного назначения, заключающиеся в измерении параметров пульсационных скоростей с помощью ультразвуковых колебаний путем регистрации изменений частоты фазы или времени распространения колебаний вдоль и против потока жидкости [1] Недостатками известных способов являются сложность практической реализации и зависимость результатов измерений от длины задаваемой базы измерения.

По технической сущности и количеству совпадающих признаков наиболее близким к заявляемому относится акустический способ определения амплитуд пульсационных скоростей потока газа, заключающийся в обучении исследуемой среды вдоль потока акустическими колебаниями на несущей частоте с волновым числом Ка, приеме акустических колебаний акустическим приемником, демодуляции принятого на несущей частоте акустическим приемником колебаний и проведении спектрального анализа демодулированного сигнала [2] Недостатками известного способа являются зависимость результатов измерений от величины базы измерения, от частоты акустических колебаний, а также сложность практической реализации.

Цель изобретения получение результатов измерений параметров пульсационных скоростей, независимых от величины базы измерений, а также упрощение практической реализации способа.

Цель достигается тем, что в способе определения амплитуд пульсационных скоростей, заключающемся в облучении исследуемой среды вдоль потока акустическими колебаниями на несущей частоте с волновым числом Ка, приеме акустических колебаний акустическим приемником, демодуляции сигнала, принятого на несущей частоте акустическими приемниками колебаний, и проведении спектрального анализа демодулированного сигнала, с помощью акустического приемника дополнительно измеряют уровень звукового давления Ро акустических колебаний в отсутствие пульсационных скоростей в потоке, а при проведении спектрального анализа демодули- рованного сигнала измеряют уровень звукового давления Ра на каждой спектральной составляющей д выходного сигнала, при этом амплитуды пульсационных скоростей Vд на каждой спектральной составляющей определяют из математического выражения vд ln (1) На чертеже представлена упрощенная схема устройства для реализации способа.

В гидроканале 1 с пульсационным потоком жидкости устанавливают гидроакустический излучатель 2 акустических колебаний на несущей частоте a, связанной с волновым числом Ка через скорость звука с соотношением Ка a/с. Излучатель 2 подключен к генератору 3 электрических колебаний. На определенном расстоянии от излучателя 2 вдоль по потоку устанавливают отградуированный в единицах давления акустический приемник 4 (гидрофон), выход которого через усилитель 5 подключен к детектору 6 амплитудно-модулированных колебаний, выход которого соединен со спектроанализатором 7.

В состав устройства для реализации способа также входит микроЭВМ 8, определяющая по алгоритму (1) амплитуды Vд пульсационных скоростей для каждой из спектральных составляющих пульсационной скорости д. Способ основан на новом эффекте нелинейного взаимодействия между гидродинамическим полем и слабыми акустическими волнами. Гидродинамические пульсации производят значительные искажения амплитудно-фазовых характеристик акустического сигнала.

Способ реализуется следующим образом. Сначала в отсутствие потока пульсационных скоростей с помощью отградуи- рованного гидрофона 4 определяют уровень звукового давления Ро. В присутствии пульсационных скоростей происходит амплитуда модуляции акустических колебаний с несущей частотой a по закону изменения амплитуды пульсационных скоростей. С помощью детектора 5 выделяют огибающую модулированного сигнала и направляют продетектированный сигнал в спектроанализатор 7, в котором осуществляется спектральный анализ принятого продетекти- рованного сигнала. При этом определяют уровень звукового давления Ра на каждой спектральной составляющей д. Полученные данные вместе со значением волнового числа Ка звуковых колебаний на несущей частоте направляют в микроЭВМ 8, в которой по алгоритму (1) определяют значение пульсационных скоростей Vд для каждой спектральной составляющей. На микроЭВМ 8 с помощью обратного преобразования Фурье можно также определить временные изменения пульсационной скорости в потоке жидкости.

В предлагаемом способе результаты измерений параметров пульсационных скоростей не зависят от длины базы измерения (расстояние между излучателем и приемником). Аппаратура, реализующая способ, отличается простотой.

Формула изобретения

АКУСТИЧЕСКИЙ СПОСОБ ОПРЕДЕЛЕНИЯ АМПЛИТУД ПУЛЬСАЦИОННЫХ СКОРОСТЕЙ ПОТОКА ЖИДКОСТИ ИЛИ ГАЗА, заключающийся в облучении исследуемой среды вдоль потока акустическими колебаниями на несущей частоте с волновым числом Kа, приеме акустических колебаний акустическим приемником, демодуляции сигнала принятого на несущей частоте акустическим приемником колебаний и проведении спектрального анализа демодулированного сигнала, отличающийся тем, что с помощью акустического приемника дополнительно измеряют уровень звукового давления P0 акустических колебаний в отсутствии пульсационных скоростей в потоке, а при проведении спектрального анализа демодулированного сигнала измеряют уровень звукового давления Pа на каждой спектральной составляющей д выходного сигнала, при этом амплитуды пульсационных скоростей Vд на каждой спектральной составляющей д определяют из математического выражения

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к измерительной технике и может быть использовано для замера скорости потока в трубопроводах текучей, жидкой или газообразной среды

Изобретение относится к измерению параметров воздушных потоков в метеорологии, воздушном и водном транспорте, а также при аэродинамических исследованиях и испытаниях различных объектов техники

Изобретение относится к измерительной технике и может быть использовано для измерения расхода жидкости и газов

Изобретение относится к дистанционным методам зондирования динамических объектов и может быть использовано для определения векторного поля скоростей в жидкостях или газах

Изобретение относится к измерительной технике и может быть использовно при определении характеристик вектора скорости воздушных и жидкостных потоков

Изобретение относится к измерительной технике и может быть использовано при измерении скорости проходящей ударной волны

Изобретение относится к стендовому оборудованию, предназначенному для экспериментального исследования течения рабочего тела в турбомашинах

Изобретение относится к области технической физики, а именно к методам определения скоростей потоков газов и жидкостей в больших объемах, и может быть использовано в газовых средах, трубопроводах, при проектировании жилых и производственных помещений, нефте- и газохранилищ и т.д

Изобретение относится к исследованию гидрофизических полей и может быть использовано при проведении экологических исследований, в экспериментальной гидродинамике, океанологии и других областях техники, где требуется вести контроль состояния морской среды с подвижного носителя

Изобретение относится к контрольно-измерительной технике, а именно к оптическим измерителям потока сплошных оптических прозрачных сред (газа, жидкости и т.п.), основанных на доплеровских методах

Изобретение относится к измерительной технике и может использоваться для измерения скорости потока токопроводящих и токонепроводящих жидкостей, в частности в нефтедобывающей отрасли при контроле работы нефтяных скважин

Изобретение относится к измерительной технике и может быть использовано для измерения средних скоростей в потоках жидкости в условиях гидроакустических и гидрофизических помех, например, в океанах и морях

Изобретение относится к измерительной технике и может быть использовано в гидроакустике и гидрофизике для контроля профиля скоростей морских течений

Изобретение относится к измерению параметров движения и может быть использовано для измерения скорости движения газовоздушных потоков

Изобретение относится к измерению скорости потока как в трубопроводах, так и в открытых руслах и свободной атмосфере

Изобретение относится к измерению скорости потока различных сред как в трубопроводах, так и в открытых руслах и свободной атмосфере

Изобретение относится к технике определения параметров газовых потоков и может быть использовано для исследования сложных закрученных течений в вихревой трубе
Наверх