Способ получения ди(р-анизил)-иодониевого галогенида
Авторы патента:
Использование: в качестве реагентов для синтеза тироксина и трииодтиронила, находящих применение в медицине. Сущность изобретения: реагент 1: анизол. Реагент 2: иодилсульфат. Условия реакции: взаимодействие ведут в органическом растворителе в среде серной кислоты с последующим выделением целевого продукта добавлением галогенида щелочного, щелочноземельного металла или аммония. выход 45 - 49%. 2 з.п. ф-лы.
Изобретение относится к фармацевтической промышленности, конкретно к способу получения ди-(р-анизил)-йодониевого галоида общей формулы H3CO
I
OCH
Hal где Hal Br, I. Эти вещества используются в качестве реагентов для синтеза тироксина и трииодтиро- нина, находящих широкое применение в медицинской практике.



















1) наличие специальной операции подготовки ИС, в ходе которой образовавшийся ИС очищается от отработанной серной кислоты,
2) большой расход уксусной кислоты на операцию подготовки ИС,
3) необходимость дополнительной операции регенерации или утилизации смеси уксусной и серной кислот, образующихся при удалении серной кислоты из ИС, содержащей неорганические соединения йода. Кроме того, по способам-прототипам получение ДАИГ увязывается с конкретным методом получения ИС (А, Б), причем методы А и Б далеко не лучшие с экономической точки зрения. Предлагаемый способ ставит цель устранения вышеперечисленных недостатков. Поставленная цель достигается следующим. Нами установлено, конденсацию ИС с анизолом целесообразно проводить в присутствии серной кислоты. Серная кислота может вноситься в реакционную массу с ИС, отделенным от отработанной кислоты, в среде которой он был получен. Нами установлено, что после отделения (отфильтровыванием, центрифугированием) ИС от отработанной кислоты ИС может быть использован в синтезе ДАИГ по предлагаемому способу, как после тщательной промывки свежей концентрированной серной кислотой для удаления из ИС даже следов отработанной кислоты, так и не подвергнутый промывке и содержащий отработанную серную кислоту. Таким образом, фактор промывки ИС после его получения является незначимым, а главным является то, что последующий синтез ДАИГ проводится в присутствии серной кислоты. Нами установлено, что для получения ИС с успехом может быть использована отработанная серная кислота предыдущих операций, что весьма существенно по экономическим и экологическим соображениям. Таким образом, для синтеза ДАИГ по предлагаемому способу может быть использован ИС, полученный с применением как свежей серной кислоты, так и отработанной серной кислоты предыдущих операций. Кроме того, нами показано, что ИС для синтеза ДАИГ по предлагаемому способу может быть получен в среде концентрированной серной кислоты как по двум вышеописанным методам А и Б (способы-прототипы), так и по двум другим методам (Г и Д):
г) нагреванием йодноватой кислоты с концентрированной серной кислотой:
2HIO3+H2SO4


д) окислением йода в среде серной кислоты азотной кислотой:
I2+3HNO3+8H2SO4

К интенсивно перемешиваемому раствору 12,7 г (0,05 моля) йода в смеси 25,4 мл олеума (30% свободного SO3) и 20 мл концентрированной серной кислоты добавляли по каплям раствор 7,4 мл 90% дымящейся азотной кислоты, 3,7 мл концентрированной серной кислоты и 3,7 мл олеума (30%). Смесь перемешивали при 70-80оС в течение 1,5 ч, при этом цвет йода исчезает и образуются желтые кристаллы ИС (0,05 моль). Если исчезновения цвета йода не происходит, то добавляют по каплям дополнительно концентрированную азотную кислоту. После выдержки (контроль по обесцвечиванию) реакционную массу охлаждали. Дальнейшее описано в примерах 1 и 3. Таким образом, способ, которым в среде концентрированной серной кислоты получают ИС, не оказывает влияния на последующий синтез ДАИГ по предлагаемому способу. Для лучшего понимания предлагаемого способа синтеза ДАИГ рассмотрим конкретные примеры. П р и м е р 1. 0,1 моля ИС получали по любому из методов (2-5) и после выдержки отделяли (фильтрованием, центрифугированием или декантацией) от отработанной серной кислоты, не промывали или промывали свежей концентрированной серной кислотой (в случае промывки промывная кислота также отделялась от ИС) и использовали в синтезе ДАИГ (пример 3). П р и м е р 2. Получение 0,1 моля ИС проводили по любому из методов (2-4), но в среде отработанной серной кислоты предыдущей операции, к которой не прибавляли или прибавляли свежей кислоты: 90-100% H2SO4 или олеум с концентрацией свободного SO3 до 60% из расчета на 1 массовую долю отработанной кислоты до 0,4 массовых долей свежих кислот. Дальнейшее описано в примере 1. П р и м е р 3. 0,1 моля ИС, полученного как описано в примерах 1 и 2 суспендировали в 500 мл ледяной уксусной кислоты при температуре 16-18оС и к полученной суспензии при перемешивании прикапывали 45 г (45,2 мл, 0,416 моля) анизола в течение 1-2 ч, поддерживая температуру 15-20оС. После прибавления анизола суспензию перемешивают 2-3 ч при этой же температуре. После выдержки небольшое количество серо-белого осадка отфильтровывают и к фильтрату при перемешивании добавляют раствор 31,5 г (0,29 моля) бромида натрия в 60 мл воды. После перемешивания 1 ч при температуре 16-18оС выпавшие в осадок кристаллы ДАИБ отфильтровывают, промывают уксусной кислотой, горячей водой до нейтральной реакции промывных вод и сушат на воздухе. Выход 37,7-40,2 г (45-48%), т.пл. 190-192оС. При использовании для осаждения йодистого натрия получали ди-(р-анизил)-йодоний йодид с выходом 47-49% от теории. В качестве органических растворителей для проведения реакции получения ДАИГ могут быть использованы 100-95% уксусная кислота (0-5%) воды), ацетонитрил, смеси уксусной кислоты с ацетонитрилом или уксусным ангидридом, но предпочтительным является использование высококонцентрированной уксусной кислоты. Количество уксусной кислоты может быть уменьшено или увеличено против приведенного в примере 3. В реакционную массу перед прикапыванием анизола могут быть добавлены небольшие количества нейтрализаторов (гидроокисей, карбонатов, бикарбонатов, ацетатов, двух или трех замещенных фосфатов щелочных, щелочноземельных металлов или аммония и др.). Таким образом, предлагаемый способ по сравнению со способами-прототипами имеет следующие преимущества:
1) уменьшение расхода ледяной уксусной кислоты, вследствие ее исключения из процесса получения ИС для удаления отработанной серной кислоты;
2) отсутствие дополнительной операции регенерации или утилизации смеси отработанной серной и уксусной кислот;
3) упрощение способа получения ИС вследствие исключения из процесса стадии подготовки ИС, на которой из ИС удаляется отработанная серная кислота;
4) расширение сырьевой базы для получения ИС.
Формула изобретения
Похожие патенты:
Способ получения полизамещенных бензолов // 1553528
Изобретение относится к полизамещенным бензолам, в частности к получению соединений общей ф-лы CR<SB POS="POST">1</SB>=CH-CR<SB POS="POST">2</SB>=CH-CR<SB POS="POST">3</SB>=CR<SB POS="POST">4</SB>, где R<SB POS="POST">1</SB>=R<SB POS="POST">2</SB>=R<SB POS="POST">3</SB>=C<SB POS="POST">6</SB>H<SB POS="POST">5</SB> R<SB POS="POST">4</SB>=H, CH<SB POS="POST">3</SB>, C<SB POS="POST">2</SB>H<SB POS="POST">5</SB> или R<SB POS="POST">1</SB>=R<SB POS="POST">2</SB>=C<SB POS="POST">6</SB>H<SB POS="POST">5</SB>, R<SB POS="POST">3</SB>=CH<SB POS="POST">3</SB>O-C<SB POS="POST">6</SB>H<SB POS="POST">4</SB> CL-C<SB POS="POST">6</SB>H<SB POS="POST">4</SB> R<SB POS="POST">4</SB>=H, или R<SB POS="POST">1</SB>=R<SB POS="POST">3</SB>=BR-C<SB POS="POST">6</SB>H<SB POS="POST">4</SB>, R<SB POS="POST">2</SB>=C<SB POS="POST">6</SB>H<SB POS="POST">5</SB>, R<SB POS="POST">4</SB>=H, которые могут быть использованы в органическом синтезе
Способ получения полихлордифенилов // 635082
Способ получения дихлор-ди-п-ксилилена // 2101272
Изобретение относится к органической химии, в частности к получению полупродукта для синтеза поли-n-ксилиленов, используемых при поверхностной обработке металлических деталей в электронике
Изобретение относится к способу дехлорирования замещенных хлорароматических соединений действием восстановителя (цинк, магний или алюминий) и каталитических количеств генерируемых in situ комплексных соединений никеля с бидентантными азотсодержащими лигандами (2,2'-бипиридилом или 1,10 - фенантролином) в среде биполярного растворителя в присутствии источника протонов при температуре 70-150°С
Изобретение относится к способу химической переработки полихлорированных дифенилов (ПХД) путем взаимодействия технических ПХД общей формулы где n+m=3-5, с полиэтиленгликолями (ПЭГ) в присутствии гидроксидов калия и/или натрия в открытой системе при повышенной температуре
Способ получения дифенил-(2-хлорфенил)метана // 2180655
Изобретение относится к способу получения дифенил-(2-хлорфенил)метана для синтеза 1-(2-хлорфенил)дифенилметил-1H-имидазола, обладающего противогрибковым действием
Замещенные фталоцианины железа и способ получения хлорпроизводных ароматических углеводородов // 2340589
Изобретение относится к способу оксихлорирования ароматических углеводородов с использованием в качестве катализатора замещенных фталоцианинов железа общей формулы где Оксихлорирование проводят смесью H 2O2 и HCl в водно-спиртовой среде в присутствии предложенного катализатора
Способ получения 4,4'-дифторбензофенона // 2394016
Способ получения диарилацетиленов // 2439046
Изобретение относится к способу получения диарилацетиленов общей формулы , где R = арил; R1 = арил, взаимодействием оловоорганического соединения с арилиодидами, в среде органического растворителя, в присутствии катализатора - комплекса палладия (II), характеризующемуся тем, что в качестве оловоорганического соединения используют тетраалкинилиды олова, взаимодействие осуществляют при температуре 60-100°С
Изобретение относится к области органической химии, а именно к способу химической переработки полихлорированных дифенилов, которые до недавнего времени использовались в электротехнических изделиях в качестве изолирующих и теплообменных материалов
Изобретение относится к усовершенствованному способу получения соединения общей формулы (Ia), включающему следующие стадии: 1) взаимодействие соединения формулы (II), где Х представляет собой атом фтора, и X' выбран из группы, состоящей из атомов хлора, брома, йода и трифлатной группы (CF3SO3), с соединением формулы (III), где R представляет собой два атома хлора, в присутствии палладиевого катализатора, с образованием соединения формулы (IV); 2) радикальное бромирование соединения формулы (IV) с использованием N-бромсукцинимида в присутствии каталитического количества бензоилпероксида, с образованием соединения формулы (V); 3) превращение соединения формулы (V) в соответствующее нитрильное производное формулы (VI); 4) взаимодействие соединения формулы (VI) с 1,2-дибромэтаном с образованием соединения формулы (VII); и 5) гидролиз соединения формулы (VII) с получением соединения формулы (Ia). Способ обеспечивает более высокий выход соединения формулы (Ia) с высокой химической чистотой без стадии хроматографической очистки. 2 н. и 6 з.п. ф-лы, 5 пр.