Изобретение относится к диагностике и прогнозированию состояния материала в металлоконструкциях и может быть использовано для оценки остаточного ресурса металлоконструкций, сосудов и аппаратов давления в строительной, энергетической, химической и нефтеперерабатывающей промышленности. Сущность: в способе осуществляется определение прочности конструкции, при котором учитываются как коррозионные процессы, приводящие к уменьшению толщины элементов конструкций, так и изменение механических свойств материалов, обусловленное возникновением и распространением трещин. В N контрольных точках металлоконструкции определяют скорость vк коррозии металлоконструкции. Производят отбор M проб металла механическим путем в областях наибольшей опасности повреждения металлоконструкции, для каждой из проб определяют величину и скорость v
смещения температурной зависимости характеристик трещиностойкости. По значению vк определяют изменение во времени максимального значения напряжения Smax(t) в областях наибольшей опасности повреждения металлоконструкции. По значению v
определяют изменение критического значения напряжения Sкр(t), вызывающего разрушение металлоконструкции. Остаточный ресурс эксплуатации металлоконструкции определяют по формуле
t = t1-t0, где t0 - момент обследования металлоконструкции, t1 - момент времени, при котором Smax(t) = Sкр(t). 1 ил.
Изобретение относится к диагностике и прогнозированию состояния материала в металлоконструкциях и может быть использовано для оценки остаточного ресурса и периодичности обследования металлоконструкций сосудов и аппаратов давления в строительной, энергетической, химической, нефтехимической и нефтеперерабатывающей промышленности.
В технике известны различные методы исследования состояния материалов металлоконструкций, работающих в условиях воздействия таких эксплуатационных факторов, как повышение температуры и давления, агрессивные среды. Эти методы заключаются в определении изменений прочностных свойств материала. Известен способ диагностики состояния материала, заключающийся в определении его твердости. Однако недостатком известного метода является его недостаточная информативность, поскольку прочностная характеристика металла - твердость не учитывает изменение других важных механических свойств материалов и не является комплексной характеристикой состояния конструкции, по которой можно определить ее долговечность.
Наиболее близким к предлагаемому техническим решением является способ диагностики металлоконструкций, заключающийся в том, что в процессе эксплуатации проводят замеры ее толщины в N контрольных точках, сопоставляют полученные результаты замеров толщин с их исходными значениями, вычисляют скорость V
k коррозии металлоконструкции, по которой вычисляют ее остаточный ресурс.
Недостаток известного способа, являющегося стандартной методикой определения долговечности металлоконструкции, заключается в том, что при определении прочности конструкции учитываются лишь коррозионные процессы, приводящие к уменьшению толщины элементов конструкции, а следовательно, и к уменьшению остаточного ресурса.
Однако в реальных условиях эксплуатации, при которых работают металлоконструкции, сосуды и аппараты давления, изменяются механические свойства металла, включающие не только прочностные его свойства, но и характеристики трещиностойкости, в том числе критический коэффициент интенсивности напряжения. Поэтому определение долговечности металлоконструкции лишь по коррозионному износу в ряде случаев приводит к ошибочным результатам, так как иногда в процессе их эксплуатации не наблюдается заметной коррозии, либо коррозия полностью отсутствует, но в то же время наблюдается заметное снижение характеристик трещиностойкости материалов, которые существенно влияют на остаточный ресурс конструкции.
Цель изобретения - повышение достоверности диагностики и точности определения остаточного ресурса металлоконструкции за счет не только учета коррозионных процессов в металле, но и изменения их характеристик трещиностойкости под действием эксплуатационных факторов.
Поставленная цель достигается тем, что в способе диагностики металлоконструкций, сосудов и аппаратов давления, заключающемся в том, что производят замеры толщин металлоконструкций в N контрольных точках, сопоставляют полученные результаты замеров толщин с их исходными значениями, вычисляют коррозионный износ, определяют скорость V
kкоррозии, из полученных N значений скорости V
k коррозии выбирают максимальное, дополнительно в металлоконструкции определяют области наибольшей опасности повреждения, в выбранных областях производят отбор M проб металла механическим путем, для каждой из М проб металла определяют величину смещения температурной зависимости характеристик трещиностойкости из полученных М значений величины смещения температурной зависимости характеристик трещиностойкости выбирают максимальное значение, по которому определяют скорость V

смещения температурной зависимости характеристик трещиностойкости за период эксплуатации, по значению скорости V
k коррозии металла определяют изменение во времени максимального значения напряжения S
max (t) в областях наибольшей опасности повреждения металлоконструкции, по скорости V

смещения температурной зависимости характеристик трещиностойкости определяют изменения критического значения напряжения S
кр (t), вызывающего разрушение металлоконструкции, а остаточный ресурс эксплуатации металлоконструкции определяют по формуле:

t = t
1 - t
o, где t
o - момент обследования металлоконструкции, t
1 - момент времени, при котором S
max (t) = S
кр (t).
В соответствии с изобретением критерием оценки остаточного ресурса является условие возникновения трещин или распространения уже имеющихся трещин в наиболее напряженных объемах металла с учетом развития процессов коррозии и деградации механических свойств металла сварных соединений. В процессе эксплуатации оборудования в момент обследования определяют области наибольшей опасности повреждения. Эти области характеризуются повышенной температурой, неоднородностью строения материала в участках сварных соединений и наибольшим силовым напряжением. В этих областях вырезают М образцов металла или путем скола, среза, спила отбирают М микропроб металла. Полученные образцы подвергают испытанию для определения степени охрупчивания металла к моменту обследования. Степень охрупчивания металла зависит как от состояния внутри зерен, так и от строения и химического состава границ зерен. Эксплуатационные факторы (температура, давление, агрессивность среды) в существенной степени влияют на состояние и химический состав границ зерен и по величине могут в несколько раз превышать эффект охрупчивания от изменения металла внутри зерен. По строению изломов образцов устанавливают степень f
m межзеренного охрупчивания, обусловленную ослаблением границ зерен. Для каждого из М образцов или проб металла на момент обследования определяют зависимость характеристик трещиностойкости металла от температуры. В качестве таких характеристик могут быть выбраны критический коэффициент интенсивности напряжения К
1С, величина критического раскрытия трещины
C, критическая величина джи интеграла J
1C и другие силовые и деформационные характеристики. Информационным параметром для прогнозирования долговечности исследуемого оборудования является величина смещения характеристики трещиностойкости по оси температур за период эксплуатации, т.е. за время от момента ввода объекта в эксплуатацию до момента обследования. Определение этого параметра возможно осуществить двумя путями: 1. Сравнивают полученную на момент обследования характеристику трещиностойкости с исходной характеристикой, определенной на момент ввода оборудования в эксплуатацию и вычисляют величину ее температурного смещения

Т (см. чертеж).
2. Определение величины

Т температурного смещения характеристики смещения возможно и по скорости охрупчивания металла. Для этого исследуют кристаллические изломы отобранных М микропроб, по строению изломов устанавливают долю Е
m межзеренного разрушения в кристаллическом изломе. Тогда величина смещения

Т определяется по формуле:

Т =

Т
о + k

F
m, где

Т
о - прирост критической температуры хрупкости за счет деформационного старения.
k - коэффициент пропорциональности, зависящий от вида межзеренного разрушения.

F
m - прирост доли межзеренного разрушения за время эксплуатации на поверхности разрушения, исключая участки ямочного вязкого разрушения.
Величина температурного смещения

Т характеристики трещиностойкости существенным образом зависит от степени развития процессов обратимой отпускной хрупкости, тепловой хрупкости, коррозионного растрескивания, наводораживания металла и других охрупчивающих факторов. Анализируют полученные М значения величин

Т смещений и из них выбирают максимальное значение

Т, предоставляющее наибольшую вероятность хрупкого разрушения.
Выбранное значение величины смещения

Т характеристики трещиностойкости сопоставляют с длительностью эксплуатации конструкции и определяют скорость V

смещения характеристики трещиностойкости за время эксплуатации по формуле V

=

T
max/t
o, где t
o - время эксплуатации.
Долговечность конструкции определяется как скоростью изменения критических значений силовых или деформационных характеристик трещиностойкости, так и скоростью изменения напряженно-деформационного состояния конструкции, обусловленной коррозионным износом. Для определения скорости V
k коррозии измеряют толщину стенок металлоконструкции в основных силовых ее зонах, сравнивают полученные значения с исходными значениями на момент ввода конструкции в эксплуатацию и определяют скорость коррозионного износа Н элементов конструкции. Из полученных значений выбирают максимальное значение Н
max(из соображений выбора наиболее опасной ситуации с точки зрения разрушения) и, учитывая длительность t
o эксплуатации, определяют скорость коррозии V
k металла по формуле: V
k = Н
max/t
o Условием разрушения металлоконструкции (а значит, и критерием оценки остаточного ресурса) является достижение расчетной силовой или деформационной характеристикой трещиностойкости ее критического значения в наиболее напряженных объемах металлоконструкции. В качестве этого условия может быть достижение максимального напряжения S
max (t) уровня критического напряжения S
кр (t), т.е.
S
max(t) = S
кр(t), а) S
max(t) =
o
o/

(t)

(t) =
o - V
k 
t , где
o - толщина наиболее напряженного расчетного сечения металлоконструкции на момент обследования;
V
k - скорость коррозии;
t - текущее время;
o - приложенное напряжение
б) S
кр(t) = S
кр(Т
э - V

t);
Т
э - температура эксплуатации;
S
кр (t) - температурная зависимость критического значения силовой или деформационной характеристики трещиностойкости;
V

- скорость смещения S (t);
t - текущее время.
Таким образом, остаточный ресурс металлоконструкции определяется по формуле

t = t
1 - t
o, где t
o - момент обследования металлоконструкции;
t
1 - момент времени, при котором S
max(t) = S
кр(t).
Таким образом, учет изменения механических свойств, характеристик трещиностойкости позволяет не только повысить точность и надежность определения остаточного ресурса оборудования, но и проводить его определение даже в том случае, когда в оборудовании практически не наблюдается коррозии. Как правило, наиболее опасными являются хрупкие разрушения конструкций, когда охрупчивание металла связано с визуально не выявляемыми изменениями в структуре, строении и химическом составе границ зерен конструкционных материалов. К числу таких опасных явлений относится тепловая хрупкость, водородная хрупкость, коррозионное растрескивание под напряжением, щелочная и хлоридная хрупкость и т.д.
Формула изобретения
СПОСОБ ДИАГНОСТИКИ МЕТАЛЛОКОНСТРУКЦИЙ СОСУДОВ И АППАРАТОВ ДАВЛЕНИЯ И ОПРЕДЕЛЕНИЯ ИХ ОСТАТОЧНОГО РЕСУРСА, заключающийся в том, что производят замеры толщин металлоконструкции в N контрольных точках, сопоставляют полученные результаты замеров толщин с их исходными значениями, вычисляют коррозионный износ, определяют скорость V
к коррозии металлоконструкции, из полученных N значений скорости V
к коррозии выбирают максимальное и вычисляют остаточный ресурс металлоконструкции, отличающийся тем, что в металлоконструкции определяют области наибольшей опасности повреждений, в выбранных областях производят отбор M проб металла механическим путем, для каждой из M проб металла определяют величину смещения температурной зависимости характеристик трещиностойкости, из полученных M значений величины смещения выбирают максимальное значение, по которому определяют скорость V

смещения температурной зависимости характеристик трещиностойкости за период эксплуатации, по значению скорости V
к коррозии металла металлоконструкции определяют изменение во времени максимального значения напряжения S
max(t) в областях наибольшей опасности повреждения металлоконструкции, по скорости V

смещения температурной зависимости характеристик трещиностойкости определяют изменение критического значения напряжения S
кр(t), вызывающего разрушение металлоконструкции, а остаточный ресурс Dt эксплуатации металлоконструкции определяют по формуле

t = t
1-t
o,
где t
о - момент обследования металлоконструкции;
t
1 - момент времени, при котором S
max(t)=S
кр(t).
РИСУНКИ
Рисунок 1