Термонасос
Авторы патента:
Изобретение относится к вакуумной технике. Сущность изобретения заключается в том, что термонасос содержит камеру 1, в которой установлен фильтр 2, разделяющий ее на две секции. Фильтр имеет сквозные каналы, ширина которых меньше длины свободного пробега молекул перекачиваемого газа. На одной стороне фильтра 2 расположено приспособление 3 для нагрева, на противоположной стороне - приспособление 4 для охлаждения. 1 ил.
Изобретение относится к вакуумной технике и может быть использовано для перекачки различных газов.
В разных областях науки и техники существует необходимость использования конструктивно простых и надежных устройств, не содержащих движущихся элементов, для перекачки различных газов. К таким насосом относится известный адсорбционный насос, состоящий из камеры, в которой находится адсорбент, и устройства для его охлаждения (Иванов В.И. Безмасляные вакуумные насосы. - Л.: Машиностроение, 1980, с.66-67). К недостаткам этого насоса относятся периодичность работы и неэффективность его применения в случаях инертных газов и газов с низкой точкой кипения. Наиболее близким к заявляемому техническому решению является известный термомолекулярный насос, содержащий камеру, разделенную на две секции диафрагмой, против отверстия которой располагается активная пластина из особого материала, а также приспособления для нагревания пластины и охлаждения диафрагмы и стенок камеры (Иванов В.И. Безмасляные вакуумные насосы. - Л.: Машиностроение, 1980, с.41-42). Термомолекулярный насос в отличие от адсорбционного работает в непрерывном режиме и перекачивает любые газы. Однако такой насос может работать при относительно малых перепадах давления, и его конструкция предполагает наличие особого активного материала, из которого изготавливается пластина. Целью изобретения является повышение эффективности за счет увеличения перепада давления при упрощении и удешевлении конструкции. Цель достигается тем, что в термонасосе, содержащем камеру, разделенную на две секции перегородкой, и приспособления для нагревания и охлаждения соответственно противоположных сторон перегородки, согласно изобретению перегородка представляет собой фильтр со сквозными каналами, ширина а которых меньше длины свободного пробега l молекул перекачиваемого газа. Установлено, что разные температуры на противоположных сторонах фильтра с a < l обеспечивают процесс термодиффузии газа в нем, приводящий к движению газа в направлении более высокой температуры. При a < l столкновения молекул газа между собой внутри фильтра, как следует из расчетов, приводят к резкому снижению эффективности работы насоса. Не известно использование фильтров с a < l для перекачки газа за счет его термодиффузии в твердом наполнителе, образующем фильтр. Это дает основание считать предлагаемое техническое решение соответствующим критерию "существенное отличие". Сущность заявленного технического решения схематически отражена на чертеже. Термонасос содержит камеру 1, в которой установлен фильтр 2, разделяющий ее на две секции. Фильтр имеет сквозные каналы, ширина а которых меньше длины свободного пробега l молекул перекачиваемого газа. Необходимые каналы, обеспечивающие неравенство a < l, (1) могут быть получены путем спрессовывания порошка, образованного частицами соответствующих размеров, либо посредством укладки в пучок нитей, пластин, капилляров и т.д. На одной стороне фильтра расположено приспособление 3 для нагрева, на противоположной - приспособление 4 для охлаждения. Приспособлением для нагрева может являться вмонтированная в эту часть фильтра спираль, по которой пропускается ток, приспособлением для охлаждения - радиатор, по которому для большей эффективности пропускается вода или какой-либо хладагент. Термонасос работает следующим образом. С помощью приспособлений для нагрева 3 и охлаждения 4 поддерживаются разные температуры Т2 и Т1 (Т2 > Т1) на противоположных концах фильтра, что приводит к процессу термодиффузии газа в нем, вызывающему движение газа в направлении более высокой температуры. Предлагаемый термонасос, как и термомолекулярный насос, не содержит движущихся элементов и использует для перекачки газа разность температуры, но работает на основе принципиально другого физического явления - термодиффузии газа в фильтре. В отличие от этого в термомолекулярном насосе направленный поток газа получается посредством термомолекулярного эффекта накачки, возникающего за счет того, что разогретая активная поверхность твердого тела смещает пик интенсивности рассеивания молекул в сторону нормали к данной поверхности. С целью получения количественных соотношений, описывающих работу предлагаемого термонасоса, и сравнения его с прототипом необходимо рассмотреть термодиффузию газа в узких каналах, удовлетворяющих неравенству (1). Не известно об описании такого явления и использовании его для перекачки газа. Исходным, как и в случае диффузии в смеси двух газов (Лифшиц Е.М., Питаевский Л.П. Физическая кинетика. - М.: Наука, 1979, с.54-56), является кинетическое уравнение для функции распределения молекул газа f, которое в стационарном случае записывается в виде






















j =






S =
















P2/P1=



Формула изобретения
РИСУНКИ
Рисунок 1
Похожие патенты:
Молекулярный вакуумный насос // 2016255
Изобретение относится к вакуумной технике и предназначено для работы различных откачных вакуумных средств, работающих на атмосферное давление
Изобретение относится к вакуумной технике и позволяет повысить экономичность и сократить время запуска турбомолекулярного вакуумного агрегата с аэростатическими опорами роторов (Р) турбомолекулярной и молекулярной ступеней (ТС и МС)
Турбомолекулярный вакуумный насос // 2014510
Вертикальный насос // 2005919
Турбомолекулярный вакуумный насос // 1839211
Турбомолекулярный форвакуумный насос // 1828950
Турбомолекулярный насос // 1810610
Комбинированный турбомолекулярный насос // 2105905
Изобретение относится к вакуумной технике, в частности к турбомолекулярным насосам, использующимися для создания вакуума в различных технологических системах
Двухпоточный молекулярный вакуумный насос // 2107840
Изобретение относится к вакуумной технике, в частности к молекулярным вакуумным насосам, использующимся для создания вакуума в различных технологических системах
Молекулярный вакуумный насос // 2168070
Геттерный насос // 2199027
Вакуумный газоротационный насос // 2237824
Изобретение относится к области вакуумной техники, в частности к механическим вакуумным насосам, и содержит цилиндрический корпус, разделенный поперечными статорными колесами, и ротор с набором роторных колес, выполненных в виде радиальных крыльчаток, закрытых с двух сторон дисками, причем один из дисков имеет центральное отверстие, совпадающее по диаметру с отверстием в статорном колесе, выполненном в виде диска с односторонним профилированным оребрением
Изделия с покрытием // 2413746
Изобретение относится к способу покрытия изделий из вентильных металлов, которые применяются в качестве комплектующих для турбомолекулярных насосов
Ротор или статор турбомолекулярного насоса // 2455529
Изобретение относится к изготовлению роторов или статоров турбомолекулярного насоса с роторными лопастями из специального алюминиевого сплава
Изобретение относится к вакуумной технике, а именно к турбомолекулярным насосам
Изобретение относится к области вакуумной техники. Насос содержит корпус с входным патрубком и с двумя симметрично расположенными проточными частями относительно входного патрубка. Каждая часть состоит из турбомолекулярной, промежуточной и выходной молекулярной ступеней. Промежуточная ступень выполнена в виде двух кольцевых молекулярных ступеней, концентрично расположенных друг относительно друга с центром расположения на оси вращения вала. Первая кольцевая молекулярная ступень расположена на торцевой поверхности крышки, расположенной между стороной нагнетания турбомолекулярной ступени и стороной всасывания второй кольцевой молекулярной ступени. Последняя расположена между стороной нагнетания первой кольцевой молекулярной ступени и стороной всасывания выходной ступени с формированием потока откачиваемого газа от периферии к центру на сторону всасывания выходной ступени. Выходная ступень образована двумя эквидистантными цилиндрическими участками между внутренней поверхностью ротора и наружной поверхностью корпуса подшипникового узла. На наружной поверхности корпуса узла выполнены многозаходные винтовые канавки. Изобретение направлено на улучшение откачных характеристик насоса за счет повышения степени сжатия промежуточной и выходной ступеней и в результате повышение выходного давления насоса. 16 з.п. ф-лы, 2 ил.