Способ выплавки синтетического шлака для обработки стали
Использование: в металлургии, конкретнее, при выплавке синтетического шлака для обработки жидкой стали, предназначенной для непрерывной разливки. Сущность изобретения: при выплавке синтетического шлака периодически загружают в электропечь шихту из шлакообразующих материалов, содержащих оксиды железа, хрома и титана, расплавляют ее в электропечи и периодически выпускают расплав в разливочный ковш. В процессе выплавки синтетического шлака в объем печи над зеркалом расплава непрерывно подают нейтральный газ, например, азот с расходом 0,05 - 0,20 м3/мин на 1м3 объема электропечи над зеркалом расплава. После очередной загрузки шихты в электропечь в расплав подают углеродсодержащий материал, например, кокс с содержанием углерода в количестве, определяемом по зависимости m = (2 - 20)(2Cr2O3+ 1,4FeO + 3,8TiO2), где m - масса углерода в подаваемом углеродсодержащем материале, кг на тонну загружаемой шлакообразующей шихты; Cr2O3,FeO и TiO2 - процентное содержание оксидов в загружаемой шихте, %, (2-20) - эмпирический коэффициент, учитывающий характеристики процесса восстановления оксидов при выплавке синтетического шлака, кг/т.%; 2, 1, 4 и 3,8 - коэффициенты стехиометрии реакций, учитывающие различное участие оксидов в окислении подаваемого в электропечь углерода, безразмерные. После подачи углеродсодержащего материала периодически продувают расплав нейтральным газом, например, аргоном 3-10 раз по одной минуте и прекращают процесс периодической продувки за 20-40 минут до очередного выпуска расплава из электропечи. 1 табл.
Изобретение относится к металлургии, конкретнее, к выплавке синтетического шлака для обработки жидкой стали, предназначенной для непрерывной разливки.
Наиболее близким по технической сущности является способ выплавки синтетического шлака для обработки стали, включающий периодическую загрузку в электропечь шихты из шлакообразующих материалов, расплавление их в электропечи и периодический выпуск расплава в ковш. При этом в процессе выплавки не производят обновление атмосферы в объеме печи над зеркалом расплава, а также не производят присадку в расплав материалов, способствующих уменьшению содержания легковосстановимых оксидов в расплаве (см. Войнов С.Г. и др. Рафинирование стали синтетическими шлаками. М. : Металлургия, 1970, с. 135-141). Недостатком известного способа является низкая стойкость футеровки электропечи и неудовлетворительное качество стали после ее обработки синтетическим шлаком. Это объясняется тем, что в первом случае происходит интенсивное разъедание футеровки вследствие окисления графита, входящего в состав футеровки, оксидами железа и хрома, имеющимися в шихте при ее расплавлении. Эти оксиды при повышенном содержании вызывают загрязнение стали неметаллическими включениями при ее обработке синтетическим шлаком. Все это приводит к браку непрерывнолитых слитков по механическим и другим свойствам. Кроме того, повышенное содержание примесей оксидов титана снижает потребительские свойства, например, динамной стали в части электромагнитных характеристик. Технический эффект при использовании изобретения заключается в повышении стойкости футеровки электропечи для выплавки синтетического шлака, а также в улучшении качества непрерывнолитых слитков за счет уменьшения содержания в них неметаллических включений и содержания титана, в частности, в слитках из динамной, некоторых коррозионностойких сталей и других. Указанный технический эффект достигают тем, что периодически загружают в электропечь шихту из содержащих оксиды железа, хрома и титана шлакообразующих материалов, расплавляют ее в электропечи и периодически выпускают расплав в разливочный ковш. В процессе выплавки синтетического шлака в объем печи над зеркалом расплава непрерывно подают нейтральный газ, например, азот, с расходом 0,05-0,20 м3/мин на каждый 1 м3 объема электропечи над зеркалом расплава. После очередной загрузки шихты в электропечь в расплав подают углеродсодержащий материал, например, кокс с содержанием углерода в количестве, определяемом по зависимости: m = ( 2 - 20 )


(2-20) - эмпирический коэффициент, учитывающий характеристики процесса восстановления оксидов при выплавке синтетического шлака, кг/т %;
2; 1,4 и 3,8 - коэффициенты стехиометрии реакций, учитывающие различное участие оксидов в окислении подаваемого в электропечь углерода. После подачи углеродсодержащего материала периодически продувают расплав в электропечи нейтральным газом, например, аргоном 3-10 раз по одной минуте. Процесс периодической продувки прекращают за 20-40 мин до очередного выпуска расплава из электропечи. После очередного выпуска расплава синтетического шлака из электропечи процесс загрузки повторяют. Газ в расплав подают через погружную трубу. При подаче в объем электропечи над зеркалом расплава нейтрального газа образуется малоокислительная атмосфера, что обеспечивает повышение эффективности восстановления оксидов находящихся в шихте. При подаче в расплав синтетического шлака углеродсодержащего материала происходит окисление углерода и выделение в атмосферу газа в виде СО с одновременным восстановлением оксидов Cr2O3, FeO, TiO2. При этом восстановленные элементы связываются в карбиды и хромистый чугун, которые оседают на дно электропечи или на кусочки кокса. В этих условиях происходит рафинирование расплава синтетического шлака. Кроме того, удаление легковосстановимых оксидов из расплава приводит к устранению окисления графитовой футеровки электропечи, а также исключает процесс образования неметаллических включений в стали за счет окисления этими оксидами элементов раскислителей. В таблице приведены примеры осуществления способа выплавки синтетического шлака с различными технологическими параметрами. В первом примере вследствие малой величины подаваемого в расплав углеродсодержащего материала происходит неполное восстановление оксидов, что приводит к быстрому окислению и разъеданию графитовой футеровки электропечи, а также приводит к увеличенному содержанию в обрабатываемой стали неметаллических включений. Кроме того, вследствие малого расхода азота, подаваемого в объем электропечи над зеркалом расплава, атмосфера в этом объеме остается окислительной, что увеличивает угар кокса и снижает интенсивность восстановления оксидов. В пятом примере вследствие большого количества подаваемого в расплав углеродсодержащего материала происходит с одной стороны его перерасход, а с другой стороны происходит замыкание электродов электропечи через слой углеродсодержащего материала и, как следствие, отключение и выход электропечи из строя. Кроме того, большой расход азота приводит к его перерасходу, большое значение времени от окончания продувки расплава до его выпуска приводит к перерасходу электроэнергии. В шестом примере, прототипе, вследствие отсутствия подачи в расплав углеродсодержащего вещества, а также подачи инертного газа в объем электропечи под зеркалом расплава происходит быстрое окисление и разъедание графитовой футеровки электропечи, что приводит к быстрому выходу электропечи из строя. Кроме того, в этих условиях в расплаве синтетического остается большое количество легковосстановимых оксидов, что приводит к браку непрерывнолитых слитков по содержанию неметаллических включений и потребительским свойствам металлопродукций. В примерах 2-4 вследствие подачи инертного газа в объем печи над расплавом, а также ввода в расплав углеродсодержащего материала в оптимальных пределах происходит интенсивное восстановление оксидов, находившихся в шихте. В этих условиях устраняется окисление и разъедание графитовой футеровки электропечи, а также сокращается значительное количество неметаллических включений. Применение предлагаемого способа позволяет повысить стойкость футеровки электропечи на 30-40%, а также увеличить выход высших марок стали, например, динамной на 6-8%.
Формула изобретения
m = (2 - 20)

где m - масса углерода в подаваемом углеродсодержащем материале, кг на тонну загружаемой шлакообразующей шихты;
Cr2O3, FeO и TiO2 - процентное по массе содержание оксидов в загружаемой шихте, %;
(2 - 20) - эмпирический коэффициент, учитывающий характеристики процесса восстановления оксидов при выплавке синтетического шлака, кг/т

2; 1,4; 3,8 - коэффициенты стехиометрии реакций, учитывающие различное участие оксидов в окислении подаваемого в электропечь углерода, безразмерные,
после чего периодически продувают расплав нейтральным газом, например, аргоном 3 - 10 раз по одной минуте и прекращают процесс периодической продувки за 20 - 40 мин до очередного выпуска расплава из электропечи.
РИСУНКИ
Рисунок 1