Способ детекции рнк вируса гепатита а
Использование: биотехнология, а именно методы определения вирусных инфекций в клинических образцах, эпидемиология, вирусология, клиническая медицина для выявления и идентификации вируса гепатита А. Сущность изобретения: способ детекции рибонуклеиново-кислотного вируса гепатита А путем молекулярной гибридизации вирусной нуклеиновой кислоты с биотинированным дезоксинуклеиновокислотным зондом, при этом в качестве зонда используют рекомбинантный бактериофа М13 HAVP-1, содержащий вставку к дезоксинуклеиновым кислотам длиной 390 нуклеотидных звеньев, комплементарную участку генома вируса гепатита А, кодирующему оболочечный белок VP-1 и имеющую следующую нуклеотидную последовательность: 5'-CATTCAGGAG GTTTCTCAAC AACAGTTTCT ACAGAGCAGA ATGTTCCTGA TCCCCAAGTT GGCATAAAAG GGAAAGCCAA TAGGGGAAAG ATGGATGTAT CAGGACTGCA GGCACCTGTG GGAGCTATTA CAACAATTGA GGATCCAGTT TTAGCAAAGA AAGTACCTGA GACATTTCCT GAATTGAAGC CTGGACAATC CAGACATACA TCAGATCACA TGTCTATTTA TAAATTCATG GAAAGGTCTC ATTTCTTGTG TACTTTTACT TTTAATTCAA ACAATAAAGA GTACACATTT CCAATAACTC TGTCTTCGAC TTCTAATCCT CCTCATGGTT TACCATCAAC ATTAAGGTGG TTCTTTAATT TGTTTCAGTT GTATAGAGGA-3'. 2 ил.
Изобретение относится к биотехнологии, а именно к методам определения вирусных инфекций в клинических образцах с использованием биотинированных ДНК-зондов, и может быть использовано в эпидемиологии, вирусологии, клинической медицине для выявления и идентификации вируса гепатита А (ГА).
Известны иммунологические методы детекции вируса ГА, основанные на выявлении специфических антител к вирусу ГА и его поверхностных белков: радиоиммунный и иммуноферментный анализы (соответственно РИА и ИФА) [1] Однако тесты РИА и ИФА могут давать как ложноположительные, так и ложноотрицательные сигналы. Кроме того, эти методы детекции ГА хороши лишь на острых стадиях протекания болезни. Эффективность ранней диагностики ИФА составляет не более 30% [2] Одним из высокоспецифичных и чувствительных методов детекции вирусов, точнее их нуклеиновых кислот (НК) является метод молекулярной гибридизации с использованием НК-зондов. В настоящее время в лабораторных исследованиях вируса ГА широко используются методы молекулярной гибридизации на основе радиоактивно-меченых ДНК-зондов. Например, известен [3] высокочувствительный метод детекции РНК вируса ГА с помощью 32Р-меченого одноцепочечного ДНК-зонда на основе бактериофага М13 (зонд получают методом достройки второй цепи с помощью фрагмента Кленова ДНК-полимеразы 1). Однако применение радиоактивно-меченых ДНК-зондов в условиях клинической лаборатории, как правило, невозможно в связи с необходимостью строгого соблюдения правил радиационной безопасности, а также из-за быстрого распада радиоизотопа 32Р (период полураспада 14 дней). Известно использование нерадиоактивных биотин-меченых зондов на основе плазмиды pBR 322 для детекции РНК вируса ГА [4] Однако достоверно известно [5] что зонды на основе двухцепочечных ДНК уступают по чувствительности одноцепочечным. Методы детекции РНК вируса ГА с использованием одноцепочечных биотинированных зондов в литературе не описаны. Задачей изобретения является создание высокочувствительного способа детекции РНК вируса ГА на основе метода молекулярной гибридизации с использованием высокоспецифичного одноцепочечного биотинированного зонда, который послужит основой при создании тест-набора для широкого применения в условиях клинической практики. Поставленная задача решается предлагаемым способом детекции РНК вируса гепатита А путем молекулярной гибридизации вирусной нуклеиновой кислоты с биотинированным ДНК-зондом, при этом в качестве зонда используют рекомбинантный бактериофаг М13 HAVP-1, содержащий вставку кДНК длиной 390 нуклеотидных звеньев, комплементарную участку генома вируса гепатита А, кодирующему оболочечный белок VP-1 и имеющую следующую нуклеотидную последовательность: 51 GATTCAGGAC GTTTCTCAAC AACAGTTTCT ACAGAGCAGA ATGTTCCTGA TCCCCAAGTT GGCATAAAAG GGAAAGCCAA TAGGGGAAAG ATGGATGTAT CAGGAGТGCA GGACCTGTG GGAGCTATTA CAACAATTGA GGATCCAGTT TTAGCAAAGA AAGTACCTGA GACATTTCCT GAATTGAAGC CTGGAGAATC CAGACATACA TCAGATCACA TGTCTATTTA TAAATTCATG GGAAGGTСTC ATTTCTTGTG TACTTTTACT TTTAATTCAA ACAATAAAGA GTACACATTT CCAATAACTC TGTCTTCGAC TTCTAATCCT CCTCATGGTT TACCATCAAC ATTAAGGTGG TTCTTTAATT TGTTTCAGTT GTATAGAGGA-31. При конструировании зонда использована гибридная плазмида рНАv-vPI 22. В конструкции этой плазмиды по Рst 1-сайту плазмиды pBR 322 встроен фрагмент ДНК длиной 390 н.з. комплементарный РНК вируса ГА [6] Этот фрагмент выщеплен рестриктазой Pst 1 и лигирован в составе бактериофага серии М13. Полученная ДНК использована для трансформации бактерий E.col штамм IМ109. Селекция клонов проведена с использованием индикаторных чашек (с Ygal). Клоны с нарушенной экспрессией



Результаты гибридизации оценивают визуально путем сравнения с интенсивностью окраски контрольных проб. На фиг.1 представлены результаты гибридизации предлагаемого биотинированного зонда (биозонд):
с контрольной ДНК (а);
с РНК из суспензии очищенного вируса ГА (б);
с образцами сыворотки крови от больных (62 пробы) и контактировавших с больными лиц (8 проб, обведены в рамку) из очага вспышки ГА (в). Как видно на фиг.1, чувствительность биозонда достигает 1 пг контрольной ДНК (а), 100 пг вируса ГА (б). По крайней мере, 22 пробы больных и 4 пробы от контактных лиц положительные на присутствие РНК вируса ГА (в). К1 ДНК фага в количестве 1 мкг; К2 ДНК из 1 нг очищенного препарата вируса ГА; К3 суммарная РНК из образца сыворотки крови здорового донора. д) Проверка предлагаемого способа детекции вируса ГА. Исследованные образцы сыворотки крови из очага вспышки ГА были параллельно тестированы в ИФА на наличие IgM к вирусу ГА с помощью тест-набора СП "ДИАплюс" (г. Москва). 43 пробы из 62 (от больных) оказались положительными в ИФА (

Результаты анализа продуктов полимеразной цепной реакции приведены на фиг. 2. В качестве контроля (К4) использован амплифицированный фрагмент плазмидной ДНК со встроенным участком генома белка vP1 вируса ГА, полученный с использованием 2 праймеров. Праймеры, комплементарные наиболее консервативным участкам гена белка vP1 вируса ГА, применялись также при анализе проб. Были также поставлены опыты с СКА здоровых людей (доноров из пункта переливания крови). Для этого 30 образцов СК были тестированы предлагаемым способом и в реакции амплификации. Результаты анализов оказались отрицательными. Источники информации:
1. Жданов В.М. Ананьев В.А. и Стаханова В.М. Вирусные гепатиты, М. 1986, с. 41. 2. Донец М.А. и др. Журн. микробиологии, эпидемиологии и иммунобиологии, 1988, N 1, с. 61-65. 3. Николаева Е.С. и др. Вопросы вирусологии, 1990, N 5, с. 385-386. 4. Enzo Diagnostics, inc (an Enzo Biochem Company). Product Catalog, 1988, с. 28. 5. Hu N-T, Messing g. Gene, 1982, 17, р.271-277. 6. Овчинников Ю. А. и др. Доклады АН СССР, 1985, т. 285, N 4, с.1014-1018. 7. F. Sanger, S. Nicklen, A.R. Conlson, Proc. Natl Acad. Sci USA, 1977, 74, р. 5463-5467. 8. Anonyms, M13 Clining 1 "Dideoxy" Sequencing Manual Gaithersburg, 1980. 9. Вейко Н.Н. и др. Биотехнология, 1989, т. 5, N 4, с. 414-419. 10. G.G. Leary, D.G. Brigati, D.C. Ward, Proc. Natl Acad. Sci USA, 1983, 80 N 13, р.4045-4049. 11. R. Rueckert. On the structure and morphogenesis of Picornaviruses in: Comprehensive Virology (Fraenkel-Conrat Hand Wagner R eds). New Jork: Plenum, 1976, 6, р.131-213. 12. G.R. Ticehurst, S.M. Feinstone, J. Chestnut et al. G. Clin Microbiol, 1987, 25, N 10, р. 1822-1829. 13. Nucleic Acid Hybridization: a Practical Approach /Eds B.D. Hames, S. G. Higgins-Oxford Washington: JRL Press, 1985. 14. A.G. Coulepis, B.N. Anderson and J.D. Gust. Advanc in Virus Research, 1987,32, р.129-169. 15. Saiki R.K. Gerfand D.H/ Stoffel S et al. Science, 1988,239, р.487-491. 16. P. J. Doherty, M. Huesca Contveras, Docch H.M. Pan S, Anal Biochem. 1989,177, р. 7-10. 17. Соринсон С.Н. Вирусные гепатиты. Л. Медицина, 1987.
Формула изобретения
51 GATTCAGGAG GTTTCTCAAC AACAGTTTCT ACAGAGCAGA ATGTTCCIGA TCCCCAAGTT GGCATAAAAG GGAAAGCCAA TAGGGGAAAG ATGGATGTAT CAGGAGTGCA GGCACCTGTG GGAGCTATTA CAACAATTGA GGATCCAGTT TTAGCAAAGA AAGTACCTGA GACATTTCCT GAATTGAAGC CTGGAGAATC CAGACATACA TCAGATCACA TGTCTATTTA TAAATTCATG GGAAGGTCTC ATTTCTTGTG TACTTTTACT TTTAATTCAA ACAATAAAGA GTACACATTT CCAATAACTC TGTCTTCGAC TTCTAATCCT CCTCATGGTT TACCATCAAC ATTAAGGTGG TTCTTTAATT TGTTTCAGTT GTATAGAGGA 31.
РИСУНКИ
Рисунок 1, Рисунок 2