Пьезоэлектрический двигатель
Использование: в устройствах точной механики, в робототехнике, станкостроении, оптике. Сущность: в пьезоэлектрическом двигателе, содержащем пьезопакет, состоящий из набора пьезоэлектрических пластин, поляризованных по толщине, соединенных механически последовательно, и зажатый между опорными элементами с конической боковой поверхностью, сопряженными с осевым отверстием в пьезопакете. Опорные элементы выполнены из материала с температурным коэффициентом расширения, удовлетворяющим соотношению:
оп=
п-(L
п+l
к)tg
/Do, где L,lк -длина пьезопакета и выступающих за него частей пьезоэлектрического двигателя соответственно,
п,
к - температурные коэффициенты расширения материала пьезопакета и выступающих за него частей пьезодвигателя соответственно,
- угол наклона боковых поверхностей опорных элементов, Do - диаметр отверстия в пьезопакете. 1 ил.
Изобретение относится к устройствам точной механики и может быть использовано в робототехнике, станкостроении, оптике.
Известен пьезоэлектрический двигатель в виде пьезопакета из соединенных механически последовательно, а электрически параллельно, поляризованных по толщине пьезоэлектрических пластин. Недостатками устройства являются малая чувствительность и диапазон перемещений, температурная нестабильность. Наиболее близким по технической сути к предлагаемому является выбранный в качестве прототипа пьезоэлектрический двигатель, содержащий пьезопакет из соединенных механически последовательно, а электрически параллельно - поляризованных по толщине пьезоэлектрических пластин, зажатый между коническими опорными элементами с конической внешней поверхностью, сопряженными с осевым отверстием, выполненным в пьезопакете. Недостатком устройства является температурная нестабильность. Целью изобретения является повышение температурной стабильности. На чертеже показан вариант конструкции пьезоэлектрического двигателя. Он состоит из пьезопакета 1 с осевым отверстием 2, с которым сопряжены опорные элементы 3 и 4, с коническими внешними поверхностями. Опорный элемент 3 связан с упругим корпусом 5, а опорный элемент 4 - с винтом 6, обеспечивающим зажатие пьезопакета 1 между опорными элементами 3 и 4. Устройство работает следующим образом. На пьезопакет 1 подается управляющее напряжение, в результате чего он удлиняется по оси и сжимается по диаметру. Уменьшение диаметра отверстия 2 в пьезопакете 1 приводит при этом к выжиманию опорных элементов 3 и 4 из отверстия 2 благодаря конической форме их поверхностей. При изменении знака управляющего напряжения пьезопакет 1 уменьшается в длину и расширяется по диаметру. Увеличение при этом диаметра отверстия 2 приводит к тому, что опорные элементы 3 и 4 входят в него под действием упругости корпуса 5. Величина дополнительного смещения пьезодвигателя определяется простым соотношением
z =
d/tg
, где
d - изменение диаметра отверстия 2 в пьезопакете 1,
- угол наклона боковых поверхностей опорных элементов 3 и 4. При изменении температуры, например при увеличении, увеличивается как длина пьезопакета 1, так и диаметр отверстия 2. При этом опорные элементы 3 и 4 втягиваются в отверстие 2 под действием упругости корпуса 5, так как их ТКР меньше, чем у материала пьезопакета 1, что приводит к компенсации линейного температурного расширения пьезодвигателя. При снижении температуры процесс идет в обратном направлении. Изменение диаметра отверстия 2 в пьезопакете 1 при изменении температуры на
t
Dпт = Do
п -
t, где Do - исходный диаметр отверстия 2,
п - ТКР материала пьезопакета 1. Изменение диаметра опорных элементов 3 и 4
Doт = Do
oп -
t, где
oп - ТКР материала опорных элементов 3 и 4. Начальные диаметры отверстия 2 и опорных элементов 3 и 4 считаем одинаковыми. Изменение длины устройства за счет изменения диаметров пьезопакета 1 и опорных элементов 3 и 4
Lo = - (
Dпт -
Dот)/tg
= = - Do
t (
п-
оп)/tg
, где
- угол при вершине конических опорных элементов 3 и 4. Изменение длины устройства за счет продольного расширения пьезопакета 1 при нагреве
Lп = L
п
t. Изменение длины устройства за счет выступающих справа и слева от пьезопакета 1 частей пьезодвигателя суммарной длиной l и с ТКР
к
Lк = l
к
t. При полной компенсации температурной деформации устройства
Lo +
Lп +
Lк = 0, следовательно,
= arctg
., (1) Пьезопакет 1 может быть изготовлен из пьезокерамики ЦТС-23, а опорные элементы 3 и 4 - из инвара или плавленного кварца. П р и м е р. Пусть пьезопакет 1 изготовлен из пьезокерамики ЦТС-23 (
п = 3
10-6 град-1), имеет длину L = 3
10-2 м и диаметр отверстия 2 Do= 1,6
10-2 м. Опорные элементы 3 и 4 изготовлены из плавленного кварца (
оп = 0,5
10-6 град-1), а выступающие вправо и влево от пьезопакета 1 части корпуса 5 и гайки 6 изготовлены из инвара и имеют суммарную длину l = 0,02 м (
к = =0,9
10-6 град.-1). Тогда в соответствии с выражением (1) полная компенсация температурных деформаций пьезодвигателя достигается при
= 20,3о. Таким образом, заявляемое устройство позволяет резко снизить температурные погрешности пьезодвигателя, вызванные температурной деформацией как пьезопакета, так и выступающих частей корпуса, а также элементов, подключенных к пьезодвигателю.
Формула изобретения

где
п,
к - температурные коэффициенты расширения материала соответственно пьезопакета и выступающих за него частей корпуса и элемента стыковки с объектом перемещения;L, l - соответственно длина пьезопакета и выступающих за него частей корпуса и элемента стыковки с объектом перемещения;
D0 - диаметр отверстия пьезопакета;
- угол наклона боковых поверхностей опорных элементов к оси устройства.РИСУНКИ
Рисунок 1


















