Изобретение относится к исследованиям или анализу материалов с помощью ультразвуковых, звуковых или инфразвуковых волн и может быть использовано для определения пластической анизотропии в листовых материалах и связано с быстрым неразрушающим определением коэффициента нормальной анизотропии R. Предлагается способ, включающий возбуждение в материале перпендикулярно плоскости листа упругой продольной волны, принятие отраженных волн в точке возбуждения, измерение времени
1 распространения этих волн, возбуждения в той же точке и том же направлении упругих сдвиговых волн двух поляризаций вдоль и поперек направления проката, принятие отраженных волн в точке возбуждения, измерение времен (
2 и
3) их распространения, определения значения параметра деформированного состояния с учетом измерения времен (
1,
2,
3) и упругих констант материала, определение коэффициента нормальной анизотропии по полученным результатам из соотношения:
где R(
) - зависимость коэффициента нормальной анизотропии от угла
в плоскости листа ( a = 0 совпадает с направлением прокатки), q(
) - значения параметра деформированного состояния.
Изобретение относится к исследованиям или анализу материалов с помощью ультразвуковых, звуковых или инфразвуковых волн и может быть использовано для определения пластической анизотропии в листовых материалах и связано с быстрым неразрушающим определением коэффициента нормальной анизотропии (R).
Известен способ оценки коэффициента нормальной анизотропии (R), заключающийся в механических испытаниях 3-х образцов из листа и проведении отдельно для каждого образца испытаний на растяжение и вычисления с помощью измеренных пластических деформаций по толщине и ширине образцов коэффициента R [1].
Недостатком этого способа является то, что он разрушающий и трудоемкий: вырезка образцов, их испытание на испытательной машине.
Известен способ оценки коэффициента нормальной анизотропии (R), заключающийся в введении в листовой материал упругих продольных волн, определении времени их распространения, определении упругих констант материала, определении коэффициента нормальной анизотропии [2].
Недостатком данного способа является низкая точность, связанная с тем, что для оценки упругого свойства материала, характеризуемого скоростью распространения упругих волн, необходимо определение плотности материала и прецизионное измерение его толщины, погрешность в измерении которых известными методами значительна.
Предлагаемый способ включает возбуждение в материале перпендикулярно плоскости листа упругой продольной волны, принятие отраженных волн в точке возбуждения, измерение времени
1распространения этих волн, возбуждения в той же точке и том же направлении упругих сдвиговых волн двух поляризаций вдоль и поперек направления проката, принятие отраженных волн в точке возбуждения, измерение времени
2 и
3 их распространения, определение значения параметра деформированного состояния с учетом измеренных времен
1,
2,
3 и упругих констант монокристалла, определение коэффициента нормальной анизотропии по полученным результатам из соотношения: R(

) =

, где R(

) - зависимость коэффициента нормальной анизотропии от угла

в плоскости листа (

=0 совпадает с направлением прокатки); q(

) - значение параметра деформированного состояния.
Предложенный способ отличается от прототипа тем, что в прокатанном листовом материале дополнительно перпендикулярно плоскости листа возбуждают упругие сдвиговые волны двух поляризаций вдоль и поперек направления проката, принимают отраженные волны в точке возбуждения, измеряют время
2 и
3 их распространения, определяют значения параметра деформированного состояния с учетом измеренных времен
1,
2,
3 и по упругим константам монокристалла соответствующего материала определяют коэффициент нормальной анизотропии по полученным результатам из соотношения: R(

) =

, где R(

) - зависимость коэффициента нормальной анизотропии от угла в плоскости листа; q(

) - значение параметра деформированного состояния.
Эффект от предложенного способа заключается в повышении точности измерения коэффициента нормальной анизотропии за счет исключения ошибок измерения толщины и плотности исследуемого материала.
Это достигается возбуждением дополнительно в материале перпендикулярно плоскости листа упругих сдвиговых волн двух поляризаций вдоль и поперек направления проката, принятием в точке возбуждения отраженных волн, измерением времен их распространения, определением коэффициента анизотропии по значениям времен распространения продольной и двух сдвиговых упругих волн и констант упругости монокристалла исследуемого материала. В результате этого отпадает необходимость в значениях скоростей упругих волн, используемых в прототипе для определения коэффициента нормальной анизотропии, а следовательно, в измерении толщины и плотности исследуемого материала, что исключает ошибки этих измерений и повышает точность определения коэффициента нормальной анизотропии.
П р и м е р. Предлагаемое изобретение прошло проверку на листах из низкоуглеродистых сталей 08КП и 08Ю толщиной 0,77 и 0,94 мм. На каждом образце исследуемой стали производили измерения времен прохождения продольных
1 и сдвиговых волн двух поляризаций
2 и
3 толщины материала. Затем по измеренным значениям времен
1 ,
2,
3 и упругим константам монокристалла исследуемого материала определяли параметр деформированного состояния q(

), значения которого подставляли в формулу и рассчитывали R(

), а затем - среднее значение

по всем направлениям в плоскости листа. Данную процедуру осуществляли для девяти различных точек для каждого образца исследуемой стали.
В этих же самых точках измерения по измеренным временам прохождения
1 толщины материала и измеренной толщине листа с помощью микрометра и известной плотности исследуемой стали согласно формулам, приведенным в прототипе, рассчитывали скорость распространения продольных волн и по значениям скоростей исходя из установленной ранее корреляционной зависимости определяли значения

. Результаты расчетных значений

, определенных по предлагаемому способу и прототипу, занесены в таблицу.
В дальнейшем массивы значений

подвергали статистической обработке, включающей определения среднего значения

(RMID), среднеквадратичного отклонения (SIGMR), доверительного интервала, рассчитанного с учетом коэффициента Стьюдента (EpS), соответствующего уровню доверительной вероятности 0,95, минимального (R
min) и максимального (R
max) значений

.
Результаты, приведенные в таблице, показывают, что среднеквадратичное отклонение и доверительный интервал измерений, осуществленных по предлагаемому способу, в 2,3-2,8 раза меньше по сравнению с известными.
Формула изобретения
СПОСОБ ОПРЕДЕЛЕНИЯ КОЭФФИЦИЕНТА НОРМАЛЬНОЙ АНИЗОТРОПИИ ПРОКАТНЫХ ЛИСТОВЫХ МАТЕРИАЛОВ, заключающийся в том, что в материале перпендикулярно к плоскости листа возбуждают упругие продольные волны, принимают отраженные волны в точке возбуждения и измеряют время
1 распространения этих волн в материале, определяют его упругие константы, отличающийся тем, что дополнительно в той же точке и в том же направлении возбуждают упругие сдвиговые волны двух поляризаций вдоль и поперек направления проката, принимают отраженные волны, измеряют времена
2,
3 их распространения, определяют значения параметра деформирования состояния с учетом измеренных времен
1,
2,
3 , а о коэффициенте нормальной анизотропии судят по соотношению R(

) =

, где R(

) - зависимость коэффициента нормальной анизотропии от угла

в плоскости листа

= 0 совпадает с направлением прокатки; q(

) - значения параметра деформированного состояния.
РИСУНКИ
Рисунок 1,
Рисунок 2