Способ измерения параметров состояния среды
Использование: изобретение относится к неконтактным методам исследования характеристик среды преимущественно биологического происхождения и/или контактирующей с биологическими объектами среды, параметры которой определяют жизнедеятельность данных биологических объектов. Сущность изобретения: потоком электромагнитного излучения возбуждают поверхностную электромагнитную волну в металлической пленке, расположенной на поверхности полупроводникового слоя. При этом исследуемая среда находится в области распространения излучения и/или поверхностной электромагнитной волны. Регистрируют электрический сигнал в цепи между указанными пленкой и слоем полупроводника. Параметры данного сигнала соответствуют параметрам среды, которые определяют путем сравнения данного сигнала с контрольными зависимостями. 13 з.п.ф-лы, 3 ил.
Изобретение относится к неконтактным методам исследования характеристик среды, преимущественно биологического происхождения и/или контактирующей с биологическими объектами среды, параметры которой определяют жизнедеятельность данных биологических объектов.
Изобретение может быть использовано для определения состава и свойств сред, содержащих химические и биологические компоненты, в целях научных исследований и контроля технологических процессов, в частности, в микробиологии, иммунологии, химии и биохимии, для экологического мониторинга. Известен способ измерения параметров состояния среды, включающий задание контрольных зависимостей сигнала отклика от параметров состояния среды, зажигание разряда между исследуемой средой и электродной пластиной, по короне которого судят на основании известных зависимостей о величине того или иного параметра среды. Однако данный способ почти не пригоден для исследования параметров биологических сpед, поскольку при таком воздействии велика вероятность разрушения среды или существенного изменения ее параметров. Также известен способ измерения параметров состояния среды, преимущественно для биологических или биофизических исследований, который является наиболее близким к заявленному, включающий задание контрольных зависимостей сигнала отклика от параметров состояния среды, воздействие на одну из сторон структуры, выполненной из металлической пленки, нанесенной на подложку, потоком электромагнитного излучения, с расположением упомянутой среды со стороны металлической пленки упомянутой структуры, возбуждение в металлической пленке поверхностной электромагнитной волны (ПЭВ) и формирование сигнала отклика от данной структуры, по сравнению которого с контрольными зависимостями судят об измеряемых параметрах. Преимуществом данного способа является то, что измерения можно проводить без разрушения любой среды, что существенно расширяет класс решаемых задач. Однако в данном случае сигнал отклика представляет собой оптический сигнал, поскольку обусловлен изменением характеристик отраженного от металлической пленки пучка излучения в условиях резонансного возбуждения ПЭВ в пленке. Для регистрации сигнала отклика, связанного с отраженным пучком излучения, требуется специальный измерительный канал, включающий оптическую схему с фотоприемным устройством, что делает реализацию данного способа довольно сложной. При заданном расположении элементов оптической схемы динамический диапазон измеряемой величины определяется шириной резонансной кривой, что обусловливает крайне ограниченную область применимости каждого конкретного измерительного устройства. Применение перестраиваемых оптических схем для регистрации отраженного пучка позволяет расширить диапазон измерений. Но в данном случае это возможно лишь за счет большей громоздкости измерительной схемы, а также резкого усложнения способа, связанного с необходимостью введения в процесс измерения переюстировки и переналадки последней, что ведет также к снижению точности и разрешающей способности измерений. Таким образом, применение для получения сигнала отклика отраженного пучка излучения ведет к усложнению и удорожанию методик измерений и измерительных устройств, ухудшает их предельные характеристики, качество и эксплуатационные параметры. Перечисленные факторы являются существенными недостатками указанного способа. Целью изобретения является усовершенствование эксплуатационных параметров способа, в частности, повышение точности и разрешающей способности измерений, расширение области применимости способа и диапазона измеряемых параметров, обеспечение удобства, дешевизны и быстроты процесса измерения за счет применения компактных и недорогих средств измерения, которые могут быть изготовлены на базе промышленной технологии микроэлектроники. Данная цель достигается тем, что в твердотельной структуре в качестве подложки, на которую нанесена металлическая пленка (непосредственно либо через промежуточный слой с большим чем у металла удельным сопротивлением), используют слой полупроводника, регистрируют электрический сигнал непосредственно в цепи между металлической пленкой и слоем полупроводника, при этом данный электрический сигнал используют в качестве сигнала отклика от упомянутой структуры. При этом электрический сигнал регистрируют на склоне резонансной кривой зависимости величины упомянутого сигнала, по крайней мере от одной из координат направления потока и/или частоты электромагнитного излучения, причем используют расходящийся, или коллимированный поток электромагнитного излучения, который может быть как монохроматическим, так и немонохроматическим, а также линейно поляризованным, а подачу этого потока могут осуществлять как непосредственно, так и через оптическое волокно. Для расширения диапазона измерений изменяют одну из угловых координат направления потока электромагнитного излучения относительно указанной структуры либо частоту электромагнитного излучения. Для повышения точности и селективности измерений на поверхности или над поверхностью металлической пленки со стороны, противоположной расположению слоя полупроводника, размещают слой вещества с заданными зависимостями его параметров от величины и типа внешнего воздействия, которое прикладывают к данному слою вещества. В частности, над поверхностью металлической пленки располагают по крайней мере один слой вещества для связывания по крайней мере одного компонента среды. Максимальной простоты и компактности средств возбуждения ПЭВ в металлической пленке упомянутой структуры достигают тем, что поверхность металлической пленки со стороны, противоположной расположению слоя полупроводника, выполняют пространственно модулированной. Следует подчеркнуть, что в данном случае поток электромагнитного излучения возбуждает ПЭВ в металлической пленке, нанесенной на полупроводниковую подложку, и осуществляется регистрация электрического сигнала непосредственно между металлической пленкой и полупроводником, т.е. в данном случае в одной твердотельной структуре совмещены чувствительный элемент измерительного устройства и фотоприемник, что позволяет избежать измерений параметров отраженного пучка излучения. Следовательно, отсутствуют какие-либо вторичные каналы регистрации оптических сигналов, в то время как реализация приемов прототипа основана на измерении параметров отраженного от металлической пленки пучка излучения и характеризуется принципиальными недостатками, перечисленными выше, требует более сложных средств измерения и более трудоемких операций. Таким образом, очевидно преимущество заявляемого способа перед известным в части усовершенствования эксплуатационных параметров способа, в том числе в части более простой методики регистрации упрощения и удешевления процесса измерения за счет применения компактных и недорогих средств измерения, которые могут быть изготовлены на базе промышленной технологии микроэлектроники, повышения точности и разрешающей способности измерений при обеспечении широкого диапазона измеряемых параметров. На фиг. 1 показана схема, реализующая заявленный способ; на фиг. 2 - зависимость сигнала отклика от угловой координаты направления падения потока электромагнитного излучения на металлическую пленку; на фиг. 3 - зависимость сигнала отклика от конкретного параметра исследуемой среды. Заявленный способ схематично реализуется следующим образом. В соприкосновение с тестируемой средой 1 вводят твердотельную структуру 2. Важнейшими элементами структуры 2 являются металлическая пленка 3 и полупроводниковая подложка 4, которые могут как непосредственно граничить между собой, так и быть разделенными тонким слоем промежуточного материала 5. Последний с удельным сопротивлением, повышающим удельное сопротивление пленки 3, иногда специально вводят для задания желаемого омического сопротивления перехода металл - полупроводник. К пленке 3 и подложке 4 через омический контакт 6 присоединяют электрические выводы 7 и 8 соответственно, посредством которых структуру 2 подключают к измерительной цепи как фотоэлемент либо как фотодиод. Регистрируемой величиной служит электрический (вольтовый) сигнал. Среда 1 может помещаться для тестирования в некоторую специальную кювету либо наоборот структура 2 может привноситься в среду 1. При этом важно лишь то, чтобы хотя бы часть среды 1 находилась по отношению к пленке 3 со стороны, противоположной расположению полупроводника 4. Источником электромагнитного излучения 9 (как правило, видимого или инфракрасного диапазона) на поверхности пленки 3, обращенной к среде 1, возбуждают поверхностные электромагнитные волны (ПЭВ). Возбуждение ПЭВ сопровождается резонансным усилением электрического сигнала. Регистрируя этот сигнал и сопоставляя его отличительные особенности (например, величину, положение максимума в зависимости от угла падения либо частоты излучения) с контрольными зависимостями от некоторого параметра среды, определяют величину последнего. В основе данного способа лежат следующие физические явления. Как известно, ПЭВ на границе раздела сред, в частности металла (пленки 3) и диэлектрика (среды 1), возбуждаются путем преобразования падающего p-поляризованного электромагнитного излучения от источника 9 посредством призмы Rnпризмы sin

































Формула изобретения
1. СПОСОБ ИЗМЕРЕНИЯ ПАРАМЕТРОВ СОСТОЯНИЯ СРЕДЫ, включающий задание контрольных зависимостей отклика от параметров состояния среды, воздействие на одну из сторон структуры, выполненной из металлической пленки, нанесенной на подложку, потоком электромагнитного излучения с расположением упомянутой среды со стороны металлической пленки упомянутой структуры, возбуждение в металлической пленке поверхностной электромагнитной волны и формирование сигнала отклика от данной структуры, по сравнению которого с контрольными зависимостями судят об измеряемых параметрах, отличающийся тем, что в качестве подложки используют слой полупроводника, регистрируют электрический сигнал в цепи между металлической пленкой и слоем полупроводника, при этом данный электрический сигнал используют в качестве сигнала отклика от упомянутой структуры. 2. Способ по п.1, отличающийся тем, что между металлической пленкой и слоем полупроводника располагают промежуточный слой, удельное сопротивление которого превышает удельное сопротивление упомянутой металлической пленки. 3. Способ по п.1, отличающийся тем, что на поверхности или над поверхностью металлической пленки со стороны, противоположной расположению слоя полупроводника, размещают слой вещества с заданными зависимостями его параметров от величины и типа внешнего воздействия, которое прикладывают к данному слою вещества. 4. Способ по п.1, отличающийся тем, что изменяют одну из угловых координат направления потока электромагнитного излучения относительно указанной структуры. 5. Способ по п.1, отличающийся тем, что изменяют частоту электромагнитного излучения. 6. Способ по п.1, отличающийся тем, что электрический сигнал регистрируют на склоне резонансной кривой зависимости величины упомянутого сигнала от по крайней мере одной из координат направления и/или частоты потока электромагнитного излучения. 7. Способ по п.1, отличающийся тем, что используют расходящийся или сходящийся поток электромагнитного излучения. 8. Способ по п.1, отличающийся тем, что используют коллимированный поток электромагнитного излучения. 9. Способ по п.1, отличающийся тем, что используют поток монохроматического электромагнитного излучения. 10. Способ по п.1, отличающийся тем, что используют поток немонохроматического электромагнитного излучения. 11. Способ по п.1, отличающийся тем, что используют поток линейно поляризованного электромагнитного излучения. 12. Способ по п.1, отличающийся тем, что подачу потока электромагнитного излучения к среде осуществляют через оптическое волокно. 13. Способ по п.1, отличающийся тем, что на поверхности металлической пленки или над ней располагают по крайней мере один слой вещества для связывания по крайней мере одного компонента среды. 14. Способ по п. 1, отличающийся тем, что поверхность металлической пленки со стороны, противоположной расположению слоя полупроводника, выполняют пространственно модулированной.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3