Способ времяпролетной масс-спектрометрии
Использование: относится к времяпролетной масс-спектрометрии. Сущность изобретения: заключается в разделении испущенных источником ионов в первом бесполевом пространстве дрейфа по времени пролета на пакеты, отражении пакетов ионов в электростатическом поле с их последующим направлением во второе бесполевое пространство дрейфа, где осуществляется поочередное отклонение пакетов ионов определяемых масс, и последующей регистрацией. 2 ил.
Изобретение относится к масс-спетрометрии, а именно времяпролетной масс-спектрометрии, и может быть использовано в микроэлектронике для анализа состава вещества по массам ионов химических элементов и соединений.
Известен способ времяпролетной масс-спектрометрии [1], в котором направляют исследуемые ионы с одинаковой энергией из источника ионов в бесполевое пространство дрейфа и регистрируют после прохождения фиксированного пути разделенные в нем по времени пакеты ионов с одинаковой массой. Недостатком известного способа является низкая разрешающая способность из-за наличия начального разброса по энергиям в источнике ионов. Наиболее близким по технической сущности к заявляемому является способ времяпролетной масс-спектрометрии [2], в котором испущенные источником ионы разделяются в первом бесполевом пространстве дрейфа по времени пролета, далее разделенные пакеты ионов отражаются в электростатическом поле и направляются во второе бесполевое пространство дрейфа, где происходит компенсация начального разброса ионов с одинаковой массой по энергиям с последующей регистрацией пакетов ионов. Недостатками известного способа являются недостаточная разрешающая способность, обусловленная конечной временной протяженностью регистрируемых ионных пакетов, и низкая чувствительность, связанная с угловой расходимостью ионов после отражения в ионном зеркале. Целью изобретения является повышение разрешающей способности и чувствительности. Сущность изобретения заключается в том, что в способе времяпролетной масс-спектрометрии, заключающемся в разделении испущенных источником ионов в первом бесполевом пространстве дрейфа по времени пролета на пакеты, отражении пакетов ионов в электростатическом поле с их последующим направлением во втрое бесполевое пространство дрейфа и регистрацией, регистрацию пакетов ионов осуществляют посредством поочередного отклонения пакетов ионов определяемых масс во втором бесполевом пространстве дрейфа импульсным электрическим полем, напряженность которого
(t) и время воздействия на отклоняемые пакеты ионов
выбирают из соотношения:
(t)dt = tg
; (1) где
- угол регистрации, рад; Uист - ускоряющее напряжение источника ионов, В; Мi - масса определяемого иона, кг; е - элементарный заряд, Кл. На фиг.1 схематически представлено устройство, реализующее предлагаемый способ времяпролетной масс-спектрометрии; на фиг.2 изображены траектории ионов с массой Mi после отражения в ионном зеркале. Устройство состоит из источника 1 ионов, ионного зеркала 2, отклоняющих электродов 3, детектора 4 ионов, расположенного на оси, отклоненной от оси первого пространства дрейфа на угол
. Устройство работает следующим образом. Вылетающие из источника 1 в виде короткого пакета ионы массами Mi, Mj, Mк и т.д. с одинаковыми энергиями разделяются в первом пространстве дрейфа на пакеты по массам Mi, Mj, Mк и т.д. После отражения пакета ионов массой Mi в двухступенчатом (U1 и U2) поле на него воздействуют импульсом электрического поля, создаваемым при приложении к отклоняющим электродам 3 импульса напряжения с параметрами U3i,
3i. При этом длительность импульса напряжения
3i выбирают, исходя из того, что:
3i < < tпрол, (2) где tпрол - время пролета ионами с массой Mi отклоняющих электродов 3. В случае выполнения этого требования импульс электрического поля длительностью
3i, создаваемый между отклоняющими электродами 3, будет воздействовать на ионы с небольшим различием в массах Mi, дающие основной вклад в ухудшение разрешения, одинаковое время
3i, поскольку эти ионы имеют слабые различия в скоростях vi=
пролета отклоняющих электродов 3. Этот импульс сообщает ионам в промежутке между отклоняющими электродами 3 скорость vоткл.i, перпендикулярно оси первого пространства дрейфа и определяемую по формуле vоткл.i=
Uзi(t)dt, (3) где е - элементарный разряд; d3 - расстояние между отклоняющими электродами 3. Для случая прямоугольного отклоняющего импульса, формула (3) принимает вид: vоткл.i=
Uзi
зi, (4) где Uзi - амплитуда прямоугольного импульса. В случае треугольного отклоняющего импульса формула (3) имеет вид: vоткл.i= 2
Uзimax
3imax. (5)В случае, когда импульсное электрическое поле реализуется в области плоского конденсатора, параметры отклоняющего импульса напряжения на электродах конденсатора (амплитуда U3i и длительность
3i) могут быть определены из соотношения:для прямоугольного импульса
Uзi

з = dзitg
, (6) где d3 - расстояние между электродами конденсатора 3;для импульса треугольной формы
Uзi

зi= dзtg
(7)Подачу отклоняющего импульса поля на электроды 3 длительностью
3iнеобходимо осуществлять в момент пролета ионами массы Mi половины длины отклоняющих электродов 3. Время подачи отклоняющего импульса tп можно определить следующим образом:tп = tпрол.1 + tотр + t
, (8) где tпрол.1 - время пролета ионами массой Mi первого пространства дрейфа;tотр - время пролета ионами массой Mi ионного зеркала 2;
t'прол.2 - время пролета ионами массой Mi от ионного зеркала 2 до середины отклоняющих электродов 3. tпрол.1=
, где l1 - длина первого пространства дрейфа;Е - кинетическая энергия ионов на выходе из ионного источника 1
tотр= 2
, (9) где U1 - напряжение между электродами первого отражающего промежутка ионного зеркала 2 длиной d1;U2 - напряжение между электродами второго отражающего промежутка ионного зеркала 2 длиной d2;
е - элементарный заряд. Так как на выходе из ионного зеркала 2 ионы массой Mi имеют ту же скорость, что и в первом дрейфовом пространстве, то есть
vотр.i= vi=
, (10) тоt
=
, (11) где l21 - расстояние от ионного зеркала 2 до середины отклоняющих электродов 3. Значение tпрол. в требовании (11) определяется как:tпрол. =
, (12) где lэл.3 - длина отклоняющих электродов 3. Попавшие в это же время в пространство между отклоняющими электродами 3 ионы с массами Mj, MK и т.д. также приобретут в направлении, перпендикулярном оси первого пространства дрейфа, различные скорости vоткл.j, vоткл.к и т.д.:vоткл.j =
Uзi(t)dt;(13)
vоткл.к =
Uзi(t)dt. Поскольку в это же время в отражательном поле ионного зеркала 2 ионы меняют направления своего движения на противоположные с той же скоростью vi, vj, vк, суммарная скорость движения ионов vEi, vEj, veкбудет являться результатом векторного сложения скоростей вдоль оси первого пространства дрейфа vотр.i, vотр.j, vотр.к и скорости vоткл.i, vоткл.j, vоткл.к, причем очевидно:
v
=
v
;
v
=
v
;
v
=
v
. (14)Таким образом, ионы с массами Mi, Mj, Mк отклонятся на разные углы
i,
j,
к от первоначального направления движения
i= arctg
Uзi(t)dt;
j= arctg
Uзi(t)dt; (15)
к= arctg
Uзi(t)dt.. В случае прямоугольного и треугольного выталкивающих импульсов формулы (14) примут, соответственно, вид (16) и (17):
i= arctg
= arctg
;
j= arctg
; (16)
к= arctg
;
i= arctg
;
j= arctg
; (17)
к= arctg
;Поскольку детектор 4 ионов расположен на оси, отстоящей от оси первого пространства дрейфа на угол
=
i, после прохождения второго пространства дрейфа будут регистрироваться только ионы массой Mi, сфокусированные по энергии в ионном зеркале 2. Таким образом, за счет дополнительного разделения ионов по углу разлета, зависящему от массы, осуществляется повышение разрешения ионов по массам в предлагаемом способе времяпролетной масс-спектрометрии. Дополнительное слагаемое, вносимое предлагаемым способом в разрешение по массам, имеет вид:
=
, (18) где 0
. Подавая в момент нахождения в область между отклоняющими электродами 3 пакет ионов с другой массой (например, Mj, Mк)tj
l
; tк
l
(см. формулу импульса напряжения на отклоняющие электроды 3 с параметрами U3j,
3i, U3к,
3к для ионов с массой Mj, Mк соответственно) и, подбирая параметры U3j,
3j или U3к,
3к из соображения отклонения ионов с массой Mj или Мк на угол регистрации
(фиг.1), можно осуществлять исследование масс-спектра ионов из источника 1. В способе [2], взятом за прототип, происходит снижение чувствительности за счет угловой расходимости ионов после отражения в ионном зеркале. В предлагаемом способе происходит подфокусировка ионов на детектор 4 за счет воздействия импульса электрического поля, отклоняющего ионы в направлении, перпендикулярном оси первого пространства дрейфа. Это связано с тем, что при отражении ионов в зеркале они приобретают скорости, противоположные направлению первоначального движения, но равные по величине скоростям до отражения (см. формулу (14)). Таким образом, ионы массой Mi, имеющие большую скорость vi ' из-за начального разброса в источнике 1 ионов (фиг.1) и прилетающие к отражательному промежутку раньше, после отражения в ионном зеркале, имея по величине ту же скорость
viотр'
=
vi'
, оказываются сзади по отношению к ионам массой Mi, вылетевшим из источника с начальной скоростью vi '' < vi ' (vотр.i ''< vотр.i'). Но в пространстве между электродами 3 за время действия отклоняющего импульса электрического поля
3i они приобретут одну и ту же скорость в направлении, перпендикулярном оси первого пространства дрейфа v откл.i' = v откл.i'' = vоткл.i. Поэтому суммарные скорости ионов пакета массой Mi v
' и v
являющиеся результатом векторного сложения скоростей
=
+
,
= v
+
имеют тенденцию к сходимости в направлении движения к детектору (фиг.2). Минимальный размер фокусировки ионов пакета по массам driподбирается путем оптимизации параметров отклоняющего импульса соответственно для случаев прямоугольного и треугольного импульсов напряжения:dri=
dvi;(19)
dri=
dvi, где l2 - длина второго пространства дрейфа. Таким образом, в предлагаемом способе времяпролетной масс-спектрометрии происходит повышение разрешающей способности по массам ионов за счет дополнительного разделения ионов разных масс на различные углы отклонения и чувствительности за счет подфокусировки пакета ионов отклоняющим импульсом электрического поля. Предлагаемый способ может быть использован для проведения масс-анализа различных ионных пучков, применяемых в технологии и аналитике микроэлектроники, физических исследованиях с высокой чувствительностью и разрешающей способностью по массам.
Формула изобретения
(t) и время воздействия на отклоняемые пакеты ионов
выбирают из соотношения
(t)dt = tg
,где
- угол регистрации пакетов ионов, рад;Uист. - ускоряющее напряжение источника ионов, В;
Mi - масса определяемого иона, кг;
l - элементарный заряд, Кл.
РИСУНКИ
Рисунок 1, Рисунок 2
Похожие патенты:
Способ масс-спектрометрического анализа в гиперболоидном масс-спектрометре типа ионной ловушки // 2019887
Изобретение относится к масс-спектрометрии и может быть использовано при создании масс-спектрометров с высокой чувствительностью и разрешающей способностью
Времяпролетный масс-спектрометр // 2003199
Времяпролетный атомный зонд // 1825231
Изобретение относится к высоколокальным времяпролетным методам масс- спектрометрического анализа твердых тел, конкретнее, к устройствам, с помощью которых определяется химический состав веществ (металлы и полупроводники) посредством анализа одиночных ионов, образующихся в процессе поатомного испарения материала игольчатого образца в высоком электрическом поле
Времяпролетный масс-спектрометр // 1760577
Изобретение относится к приборостроению , в частности к мэсс-спектрометрическому приборостроению Сущность изобретения1 в масс-спектрометр введен измеритель 11 интервала времени между фактическим и установленным при настройке временем пролета ионов реперного компонента , выход синхроимпульсов которого подключен к входу синхронизации генератора 8 прямоугольных импульсов, вход - к выходу широкополосного усилителя 9, аналоговый выход - к блоку 7 питания отражателя ионов
Способ масс-анализа ионов // 1758705
Способ времяпролетной масс-спектрометрии // 1737560
Времяпролетный масс-спектрометр // 1732396
Изобретение относится к научному приборостроению , в частности к области исследования массового и изотопного состава вещества, т.е
Изобретение относится к массспектрометрии
Изобретение относится к способам исследования излучения и потоков элементарных частиц и может быть использовано для определения концентрации и полной функции распределения ионов магнитосферной плазмы масс-спектрометрическим способом
Изобретение относится к высоколокальным методам масс-спектрометрического анализа твердых тел, в частности к устройствам для определения химического состава веществ, посредством анализа одиночных ионов
Пылеударный масс-спектрометр // 2122257
Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований
Способ анализа макромолекул биополимеров // 2124783
Масс-спектрометр ишкова // 2143110
Изобретение относится к технической физике и может быть использовано для анализа состава материалов и веществ
Спектрометр нелинейности дрейфа ионов // 2150157
Изобретение относится к газовому анализу, предназначено для определения концентрации микропримесей веществ в газовых средах, в частности в атмосферном воздухе
Спектрометр нелинейности дрейфа ионов // 2178929
Изобретение относится к области газового анализа и предназначено для обнаружения микропримесей веществ в газовых средах, в частности атмосферном воздухе
Спектрометр подвижности ионов // 2216817
Изобретение относится к области газового анализа и может использоваться для определения микропримесей различных веществ в газах или применяться в газовой хроматографии в качестве чувствительного детектора
Изобретение относится к области спектрометрии и используется для обнаружения атомов и молекул в пробе газа
Газопылеударный масс-спектрометр // 2231860
Изобретение относится к приборостроению, средствам автоматизации и системам управления, а именно к области космических исследований
Пылеударный масс-спектрометр // 2235386
Изобретение относится к приборостроению, системам автоматизации и системам управления, а именно к области космических исследований
Масс-спектрометр газовых частиц // 2239909
Изобретение относится к приборостроению средств автоматизации и систем управления, в частности к масс-спектрометрии




















