Способ автоматического регулирования процесса сушки зерна в шахтной зерносушилке и устройство для его осуществления
Использование: сушка твердых материалов или предметов путем удаления из них влаги, в частности регулирование технологического процесса сушки зерна и других сыпучих материалов в сушилках шахтного типа с зонным управлением. Сущность изобретения: в каждой из зон сушильной камеры дополнительно измеряют влажность зерна на входе и выходе зоны и по значениям влажности зерна на входе соответствующей зоны и экспозиции сушки регулируют температуру теплоносителя, подаваемого в зону, а по значениям влажности и температуры зерна- на выходе соответствующей зоны, по экспозиции сушки зерна в сушильной камере корректируют температуру теплоносителя, подаваемого в зону. 2 с.п. ф-лы, 1 ил.
Изобретение относится к прикладной механике, а именно к вопросам сушки твердых материалов или предметов путем удаления из них влаги и используется в сельском хозяйстве для регулирования технологического процесса сушки зерна и других сыпучих материалов в сушилках шахтного типа с зонным управлением.
Известен способ автоматического управления процесса сушки зерна и устройство для его осуществления в сушилках шахтного типа с зонным управлением [1]. Недостатком известного способа сушки и устройства для его реализации являются: 1. Невозможность установить предельно допустимые режимы сушки зерна для различных зон сушки. Это объесняется, во-первых, отсутствием контроля действительных значений влажности зерна в зонах сушки и, во-вторых, отсутствием корректирующих связей между экспозицией сушки зеран и контурами регулирования температуры теплоносителя и температуры зерна, в связи с чем снижается точность регулирования. 2. Контроль температуры зерна в зонах осуществления без одновременного контроля его влажности, что не позволяет правильно определить предельно допустимую температуру нагрева зерна и, как следствие, может привести к перегреву зерна и к снижению его качества. Наиболее близким по сущности является способ автоматического регулирования процесса сушки зерна и устройство для его осуществления [2]. Известный способ заключается в позонном регулировании температуры теплоносителя с целью стабилизации заданных значений температур нагрева зерна с зонах сушки, а также в стабилизации влагосъема зерна в сушильной камере. Наиболее близким является устройство, которое содержит зерносушилку с зонным управлением, контур регулирования влагосъема зерна, контур регулирования температуры теплоносителя теплогенератора, и контуры регулирования температуры зерна в соответствующих зонах сушки. Все контуры связаны между собой корректирующими элементами. Но и этот способ и устройство не лишены недостатков. 1. В прототипе регулирование режимов сушки в зонах проводится путем стабилизации заданных (вручную) значений температур нагрева зерна с коррекцией режимов для всех зон сушки по сигналам датчиков влажности зерна на входе и выходе сушильной камеры. При таком способе регулирования невозможно точно выбрать необходимые режимы сушки зерна в зонах, учитывающие повышение термостойкости зерна при сушке, так как отсутствует контроль действительных значений влажности зерна в зонах. Это не позволяет использовать сушилку с максимальной производительностью. 2. В прототипе стабилизация заданных значений температуры нагрева зерна осуществляется путем регулирования температуры теплоносителя, подаваемого в зону. При этом контроль и ограничение температуры теплоносителя в зависимости от влажности зерна в зонах не предусмотрены. Это создает опасность перегрева и порчи зерна в пограничном слое, то есть слое, который первым вступает в теплообмен с горячим теплоносителем и наиболее подвержен перегреву. Так, например, при сушке зерна высокой влажности стабилизация заданной температуры зерна в зоне сушки требует применения высоких температур теплоносителя, что является, безусловно, опасным для зерна, находящегося в пограничном слое, и при сушке, например, семенного зерна практически неприемлемо. Целью изобретения является повышение точности регулирования процесса сушки зерна и увеличение производительности сушильной камеры. Указанная цель достигается тем, что в каждой из зон сушильной камеры дополнительно измеряют влажность зерна на входе и выходе зоны и по значениям влажности зерна на входе соответствующей зоны и экспозиции сушки регулируют температуру теплоносителя, подаваемого в зону, а по значениям влажности и температуры зерна на выходе соответствующей зоны и экспозиции сушки зерна в сушильной камере корректируют температуру теплоносителя, подаваемого в зону. Указанная цель достигается тем, что в устройство дополнительно введены К-1 датчиков влажности зерна, размещенных по высоте сушильной камеры в местах стыка соответствующих смежных зон сушки, что позволяет контролировать влажность зерна по высоте сушильной камеры соответственно на входе и выходе каждой и зон сушилки. В устройство дополнительно введено К-блоков регулирования температуры, каждый из которых содержит: блок вычисления, блок максимального сигнала, корректирующий пороговый элемент, первый и второй элементы сравнения. Причем, первый вход блока вычисления i-го блока регулирования температуры соединен с соответствующим датчиком влажности зерна, размещенным на стыке i-1 и i-й зон сушки, а второй ряд соединен с контуром регулирования влагосъема зерна через соответствующий корректирующий элемент. Первый выход блока вычисления соединен с вторым входом второго элемента сравнения соответствующего i-1 блока регулирования температуры, а второй выход через первый элемент сравнения подключен к задающему входу элемента сравнения соответствующего i-го контура регулирования температуры теплоносителя в зоне сушки. Второй элемент сравнения блока регулирования своим выходом через пороговый корректирующий элемент подключен ко второму входу первого элемента сравнения, а его входы соединены: первый - через блок максимального сигнала с соответствующей группой датчиков температуры зерна i-й зоны, второй - с первым выходом блока вычисления i+1 блока регулирования температуры. Кроме того, второй вход второго элемента сравнения К-го блока регулирования температуры соединен с первым выходом дополнительного К+1 блока вычисления, входы которого соединены: первый - с датчиком влажности зерна на выходе сушильной камеры, второй - через соответствующий корректирующий элемент с контуром регулирования влагосъема зерна. Таким образом, блок вычисления i-го блока регулирования температуры вычисляет значения предельно допустимой температуры теплоносителя для i-й зоны сушки и предельно допустимой температуры нагрева зерна для i-1 зоны. Причем значения температур теплоносителя для зон сушки вычисляются по условиям нагрева пограничного слоя зерна (то есть слоя зерна, первым вступающего в теплообмен с горячим теплоносителем), как наиболее подверженного перегреву, при этом учитываются влажность зерна на входе в зону и экспозиция сушки. Значения допустимых температур нагрева зерна для зон вычисляются с учетом влажности зерна на выходе зоны сушки и с учетом экспозиции сушки. Вычисленное значение предельно допустимой температуры теплоносителя является задающим сигналом для соответствующего контура регулирования температуры теплоносителя в зоне сушки. Таким образом, в устройстве для каждой зоны сушки устанавливается предельно допустимый тепловой режим, учитывающий действительное значение влажности зерна в зоне и значение экспозиции сушки зерна. Это позволяет повысить интенсивность сушки зерна в отдельных зонах и, как следствие, увеличить производительность сушилки. Вычисленное значение предельно допустимой температуры нагрева зерна в зоне сравнивается во втором элементе сравнения с его действительным значением и в случае перегрева зерна в зоне, через пороговый корректирующий элемент корректирующий сигнал поступит на первый элемент сравнения, где будет скорректировано значение задающего сигнала температуры теплоносителя в зоне сушки и перегрев зерна в зоне будет ликвидирован. Таким образом, в устройстве дополнительно осуществлен контроль и регулирование температуры зерна в зонах сушки с учетом действительного значения влажности зерна в зоне и значения экспозиции сушки. Это позволяет обеспечить высокие качества высушиваемого зерна и поддержание максимальных по интенсивности режимов сушки. Анализ новых существенных признаков по критерию "существенные отличия" дает возможность сделать следующий вывод: ни один из существующих и известных способов сушки и устройств для их осуществления не позволяют проводить процесс сушки зерна в сушильной камере с максимальной производительностью и высоким качеством, так как ни одно из них не позволяет регулировать и корректировать режимы сушки зерна в зонах с учетом одновременно влажности зерна на входе и выходе соответствующих зона сушки, экспозиции сушки зерна и температур нагрева зерна в зонах, в том числе и в пограничном слое. В качестве примера проанализируем известные способы и устройства для сушки по критерию "существенные отличия", в которых имеются существенные признаки, общие с предлагаемым, но выполняющие другую роль (Жидко В.И. Исследование процесса сушки зерна в связи с его автоматизацией. Автореферат на соискание ученой степени докт. техн. наук. Одесса, 1970). В известном способе и устройстве осуществляется позонное регулирование тепловых режимов сушки. Однако задание регулятором температуры различных зон сушки устанавливается по влажности и температуре зерна, измеренным на входе сушильной камеры. Контроль влажности зерна внутри сушильной камеры по ее высоте отсутствует. Это может вызвать неточную установку режимов сушки, особенно в переходных режимах, и привести либо к уменьшению производительности процесса сушки, либо к перегреву и порче зерна. 2. В известном способе и устройстве в первых двух зонах сушки регулируется температура теплоносителя в зонах и температура зерна лишь контролируется, а во-вторых двух зонах наоборот регулируется температура зерна и температура теплоносителя лишь контролируется. Такой способ регулирования процесса может привести к снижению качества сушимого зерна. Так, в первых зонах из-за отсутствия коррекции режимов сушки в зависимости от температуры нагрева зерна оно может перегреться, например, в результате зависания зерна между коробами. В последних зонах при стабилизации заданных значений температуры зерна регулятором может быть подан теплоноситель с температурой, превышающей допустимые значения, что может вызвать перегрев и порчу зерна в пограничном слое. Таким образом, в предлагаемом способе и устройстве для его осуществления увеличение производительности процесса сушки и повышение точности регулирования достигается за счет более точной установки тепловых режимов сушки зерна в зонах, максимально близких к предельно возможным режимам. Это достигается за счет дополнительного измерения влажности зерна на входе и выходе каждой из зон сушильной камеры и использовании измеренных значений для выработки режимов сушки зерна в зонах. Так, по значениям влажности зерна входе зоны и экспозиции сушки устанавливается и регулируется величина предельно допустимой температуры теплоносителя в зоне сушки, которая учитывает действительное значение термоустойчивости зерна в зоне сушки, в том числе и в пограничном слое. По значениям влажности зерна на выходе зоны и экспозиции сушки устанавливается величина предельно допустимой температуры нагрева зерна в зоне, которая непрерывно сравнивается с контролируемым значением нагрева зерна в зоне и, если обнаруживается перегрев, то вырабатывается сигнал, корректирующий температуру теплоносителя в зоне, чем предупреждается перегрев и порча зерна. На чеpтеже изобpажена стpуктуpная схема устpойства. Устройство содержит сушильную камеру 1 и теплогенератор 2, соединенные между собой подводящим диффузором 3, разделенным по высоте посредством перегородок 4 на К-зон 5, каждая из которых соответственно снабжена отверстием для патрубка подсоса атмосферного воздуха 6 и регулирующим органом подачи теплоносителя 7 из теплогенератора 2 в зону 5. Устройство содержит также отводящий диффузор 8 и вытяжной вентилятор 9, создающий движение теплоносителя в сушильной камере 1. Сушильная камера 1 оснащена также К+1 датчиками влажности зерна 10, размещенными на входе и выходе сушильной камеры 1, а также в местах стыка соответствующих зон сушки; К-группами датчиков температуры зерна 11, установленными соответственно на выходе зон сушильной камеры 1; К-датчиками температуры теплоносителя 12, установленными на выходе соответствующих зон 5 подводящего диффузора 3 и подключенными каждый датчик 12 через соответствующий элемент сравнения 13 и регулирующий прибор 14 к соответствующему регулирующему органу подачи теплоносителя 7 из теплогенератора 2 в зону 5; датчиком температуры теплоносителя, установленным на выходе теплогенератора 2 и подключенным через элемент сравнения 16 к регулирующему прибору 17 теплогенератора 2. Таким образом, датчик температуры теплоносителя 15 теплогенератора 2, элемент сравнения 16 и регулирующий прибор 17 теплогенератора 2 образуют контур стабилизации температуры теплоносителя на выходе теплогенератора. Соответственно в каждой зоне 5 подводящего диффузора 3 датчик температуры 12, элемент сравнения 13, регулирующий прибор 14 и регулирующий орган 7 образуют контуры стабилизации температуры теплоносителя в зонах 5. Кроме того, в устройстве организован контуp стабилизации влагосъема зеpна, в котором датчики влажности 10 зерна на входе и выходе сушильной камеры 1 подключены к входам блока сравнения 18, а его выход через регулирующий прибор 19 соединен с приводом выпускного аппарата 20 сушильной камеры 1. В устройство введено также К-блоков регулирования температуры 21, предназначенных для выработки и своевременной корректировки задающих воздействий для соответствующих контуров стабилизации температуры теплоносителя в зонах 5. Каждый из блоков регулирования температуры 21 включает в себя блок вычисления 22, блок максимального сигнала 23, пороговый корректирующий элемент 24, первый элемент сравнения 25 и второй элемент сравнения 26. Причем, первый вход блока вычисления 22 i-го блока регулирования температуры 21 соединен с соответствующим датчиком влажности 10 зерна, размещенным на стыке i-1 и i-й зон сушки, второй вход блока 22 соединен с контуром регулирования влагосъема зерна через соответствующий корректирующий элемент 27, первый выход блока 22 соединен со вторым входом второго элемента сравнения 26 соответствующего i-1 блока регулирования температуры 21, а второй выход блока 22 через первый элемент сравнения 25 подключен к задающему входу элемента сравнения 13 соответствующего i-го контура регулирования температуры теплоносителя в зоне 5. Второй элемент сравнения 26 блока регулирования 21 своим выходом через пороговый корректирующий элемент 24 подключен к второму входу первого элемента сравнения 25, а его входы соединены первый через блок максимального сигнала 23 с соответствующей группой датчиков температуры зерна 11, второй с первым выходом блока вычисления 22 i+1 блока регулирования температуры 21. Кроме того, второй вход второго элемента сравнения 26 К-го блока регулирования температуры 21 соединен с первым выходом дополнительного К+1 блока вычисления 22, входы которого соединены первый с датчиком влажности 10 зерна на выходе сушильной камеры 1, второй через соответствующий корректирующий элемент 27 с контуром регулирования влагосъема зерна. Кроме того, все К-контуров регулирования температуры теплоносителя в зонах 5 соединены через соответствующие корректирующие элементы 28 с контуром регулирования температуры теплоносителя теплогенератора 2, который в свою очередь через соответствующий корректирующий элемент 29 соединен с контуром регулирования влагосъема зерна. Устройство, реализующее способ, работает следующим образом. Влажное зерно поступает в сушильную камеру 1 и движется по ней сверху вниз, последовательно проходя К-зон сушки. Экспозиция сушки (то есть время пребывания зерна в сушильной камере 1) обеспечивается выпускным аппаратом 20. Горячий теплоноситель, вырабатываемый в теплогенераторе 2, поступает через соответствующие К-зон 5 подводящего диффузора 3 в сушильную камеру 1, продувается через слой зерна и через отводящий диффузор 8 выбрасывается вентилятором 9 в атмосферу. В каждой из К-зон 5 подводящего диффузора 3 предусмотрена возможность регулирования температуры теплоносителя путем изменения положения регулирующего органа 7 и регулирования, таким образом соотношения горячего теплоносителя, поступающего из теплогенератора 2 и атмосферного воздуха, засасываемого в зону 5 через патрубок 6. Контур регулирования влагосъема зерна работает следующим образом. Сигналы с датчиков влажности 10, установленных на входе и выходе сушильной камеры 1, поступают в блок сравнения 18, в котором они сравниваются с заданным значением влагосъема








Формула изобретения
1. Способ автоматического регулирования процесса сушки зерна в шахтной зерносушилке путем измерения разности влагосодержания зерна на входе и выходе сушильной камеры, температуры теплоносителя на входе теплогенератора и температур теплоносителя, подаваемого в зоны сушильной камеры, сравнения измеренных значений с заданными, изменения расходов теплоносителя в зоны в зависимости от температуры теплоносителя в зоне и корректирования их в зависимости от температуры теплоносителя на входе в теплогенератор и разности влагосодержаний зерна на входе и выходе сушильной камеры и изменения экспозиции сушки в сушильной камере в зависимости от разности влагосодержаний зерна на входе и выходе сушильной камеры и корректирования ее в зависимости от температуры теплоносителя на входе теплогенератора, отличающийся тем, что, с целью повышения точности регулирования процесса и увеличения производительности сушильной камеры, измеряют влажность зерна на входе и выходе зон сушильной камеры и корректируют заданные значения температур в зонах по значениям влажности зерна на входе и выходе в зону и разности влагосодержания зерна на входе и выходе сушильной камеры. 2. Устройство для автоматического регулирования процесса сушки зерна в шахтной зерносушилке, содержащее датчики влажности на входе и выходе сушильной камеры, подсоединенные к блоку сравнения влажности, выход которого подключен к регулятору экспозиции сушки и через корректирующее звено к регулятору температуры теплоносителя теплогенератора, соединенному с датчиком температуры теплоносителя теплогенератора и через корректирующее звено с регулятором экспозиции, датчики температуры зерна на выходе зон сушильной камеры и датчики температуры теплоносителя, подаваемого в зоны, подсоединенные к блокам сравнения температуры в зонах, выходы которых подсоединены к регуляторам температуры в зонах, соединенных через корректирующие элементы с регулятором температуры теплоносителя теплогенератора, отличающееся тем, что, с целью повышения точности регулирования и увеличения производительности сушильной камеры, оно содержит датчики влажности зерна на входах зон сушильной камеры, блоки максимального сигнала, первые и вторые элементы сравнения, блоки вычисления, корректирующие пороговые элементы и корректирующие элементы экспозиции, причем входы блоков максимального сигнала подключены к датчикам температуры зерна на выходе из зон, а выходы соединены с первыми входами первых блоков сравнения, к вторым входам которых подсоединены выходы блоков вычислений последующих зон и выходы которых соединены через корректирующие пороговые элементы с первыми входами вторых блоков сравнения, к вторым входам которых подсоединены выходы блоков вычисления, соединенных с датчиками влажности на входе в зоны и через блоки корректирующих элементов - с выходом регулятора экспозиции и с первыми блоками сравнения предыдущих зон, а выходы вторых элементов сравнения соединены с вторыми входами блоков сравнения температур в зонах.РИСУНКИ
Рисунок 1