Способ определения параметров h2o -и co2 - газообмена листьев растений
Использование: исследование гетерогенных процессов, в частности исследование процессов фотосинтеза и транспирации, и водного режима высших растений, в экспериментальной физиологии растений. Сущность изобретения: исследуемый амфистоматический лист ( лист, имеющий устьица на верхней и нижней сторонах) включают в известную двухстворчатую листовую камеру таких размеров, чтобы лист разделял камеру на две изолированные части - верхнюю и нижнюю. С помощью известной газометрической установки измеряют в стационарном режиме скорости транспирации и ассимиляции CO2 верхней и нижней сторон листа при контролируемых концетрациях H2O- пара и CO2 в воздухе над обеими сторонами листа. Затем над одной из сторон листа изменяют произвольно концентрацию H2O- пара и CO2 , а изменившиеся при этом суммарные скорости транспирации и ассимиляции CO2 компенсируют до их исходных значений увеличением или уменьшением концентраций соответственно H2O-пара и CO2 в воздухе над другой стороной листа. Измеряют вторые значения скоростей транспирации и ассимиляции CO2 верхней и нижней сторон листа и соответствующих концентраций H2O-пара и CO2 в воздухе над обеими сторонами, а искомые кинетические параметры вычисляют по формулам.
Изобретение относится к способам исследования гетерогенных процессов, в частности к способам исследования процессов фотосинтеза и транспирации и водного режима высших растений, и может быть использовано в экспериментальной физиологии растений.
Известны способы определения кинетических параметров Н2О- и СО2-газообмена высших наземных растений: концентраций Н2О-пара (Аi) и СО2 (Сi) над поверхностью жидкой фазы мезофильных клеток и диффузионных сопротивлений в газовой фазе листа для потоков Н2О-пара (Ra) и СО2 (Rc) [1,2,3] . Экспериментально величину Аi определяют путем непосредственного измерения концентрации Н2О-пара в окружающем лист воздухе при равновесии в системе жидкая фаза листа - воздух, т. е. в отсутствие транспирации. При таком определении Аi ее величина оказывается близкой к насыщающей даже у листьев, которые в естественных условиях во время транспирации имеют признаки завядания. На основании этих данных и наблюдаемой часто линейной зависимости скорости транспирации (Е) от влажности внешнего воздуха Аi принимают всегда насыщающей при температуре листа независимо от скорости транспирации и для определения Ra измеряют Е при некоторой контролируемой влажности воздуха над листом А, а Ra находят по формуле: Ra =























Rco=

Rcn=

Ао1, Аn1 и Со1, Сn1 - исходные концентрации Н2О-пара и СО2 в воздухе над листом;
Ао2, Аn2 и Со2, Сn2 - концентрации Н2О-пара и СО2 в воздухе над листом, установившиеся после компенсации;
Ео1, Еn1 и Fo1, Fn2 - скорости транспирации и ассимиляции СО2, установившиеся после компенсации. Заметим, что эти формулы получены решением двух независимых систем известных уравнений - для Н2О- и СО2-газообмена соответственно, - описывающих диффузионные потоки Н2О-пара и СО2 между листом и внешним воздухом и скорости этих гетерогенных процессов в открытой системе. Особое внимание обращаем на то, что и формулы, по которым рассчитываются искомые параметры, и уравнения, по которым рассчитываются входящие в эти формулы величины Е и F, являются линейными и решаются аналитическим способом. Необходимо также подчеркнуть следующее преимущество предлагаемого способа: в связи с тем, что при естественных концентрациях Н2О-пара (1-2% по объему) и СО2 (0,03% ) в воздухе они составляют незначительную долю в теплопроводности воздуха, то при компенсации суммарных скоростей массообмена листа - прежде всего, скорости транспирации - автоматически компенсируется и температура листа, что значительно, по сравнению с прототипом, упрощает и ускоряет процедуру компенсации суммарных скоростей транспирации и ассимиляции СО2. П р и м е р. Способ осуществляют следующим образом. Исследуемый лист растения помещают в двухстворчатую термостатируемую камеру, имеющую площадь 6-12 см2, снабженную термопарой (для измерения температуры листа) и присоединенную двумя парами воздухопроводов (одна пара: вход-выход воздуха для верхней части камеры, вторая пара: вход-выход для нижней части) к двум известным газометрическим системам, каждая из которых содержит газоаналитический блок (для измерения концентраций Н2О-пара (А) и СО2 (С) в воздухе над листом и скоростей транспирации (Е) и ассимиляции СО2 (F) и динамическую газосмесительную установку, предназначенную для снабжения листа в камере воздухом с регулируемыми концентрациями Н2О-пара и СО2. Лист выбирают такой площади, чтобы разделял камеру на две изолированные друг от друга части - верхнюю и нижнюю. Лист экспонируют в токе воздуха в открытой системе при постоянных предусмотренных экспериментом освещенности (50-500 Вт/м2), температуре (10-40оС) и расходе воздуха через каждую половину камеры (20-30 л/ч), а также при постоянном составе воздуха на входах: содержание СО2 - 0,01-0,1% ; О2 - 21% ; N2(азот) - 78% и относительная влажность воздуха 10-80% . При этом с помощью газоанализаторов и ЭВМ, осуществляющей необходимые расчеты по соответствующей программе, непрерывно регистрируют концентрации Н2О-пара (Ао1 и Аn1) и СО2 (Со1 и Сn1), скорости транспирации (Ео1 и Еn1) и ассимиляции СО2 (Fo1 и Fn1), а также их суммарные скорости (Е = Ео1 + Еn1 и F = Fo1 + Fn1). Экспонирование ведут до установления стационарного режима процессов, о чем судят по постоянству во времени скоростей газообмена и концентрацией Н2О-пара и СО2 в верхней и нижней частях камеры. После того, как установились и зарегистрированы соответствующие стационарному режиму скорости газообмена и концентрации Н2О-пара и СО2, с помощью одной из газосмесительных установок изменяют произвольно - на 20-25% от исходных значений - концентрации Н2О-пара и СО2 в воздухе над одной из сторон листа, а изменившиеся при этом суммарные скорости транспирации и ассимиляции СО2 приводят к исходным значениям путем увеличения или уменьшения - с помощью второй газосмесительной установки - концентраций соответственно Н2О-пара и СО2 в воздухе над второй стороной листа. По достижении установленного заранее и введенного в программу ЭВМ уровня нескомпенсированности исходных суммарных скоростей транспирации и ассимиляции СО2 - 1-2% от исходных значений - ЭВМ фиксирует вторые значения скоростей газообмена и концентраций Н2О-пара и СО2 для каждой из сторон листа, производит вычисления искомых кинетических параметров и регистрирует их значения. Следует подчеркнуть, что предлагаемый способ и реализующая его открытая газометрическая установка позволяют изменять концентрации Н2О-пара и СО2 над поверхностями листа) а следовательно, и определять указанные кинетические параметры) без применение газосмесительных установок, а именно путем изменения расхода воздуха над поверхностями листа. Для осуществления предлагаемого способа в этом варианте над одной из сторон листа расход воздуха изменяют произвольно, но настолько, чтобы концентрации Н2О-пара и СО2 в воздухе изменились на 15-20% от исходных значений, а над второй стороной листа расход воздуха изменяют в противоположном направлении до достижения исходных значений суммарных скоростей газообмена. Этот вариант способа, как и первый (основной), требует стабильности концентраций Н2О-пара и СО2 в воздухе на входах камеры; поэтому он применим только в полевых условиях, где эти концентрации изменяются медленно (по сравнению со временем измерения - 2-3 мин) и где неприменимы газосмесительные установки из-за их сложности и больших габаритов. Использование изобретения позволит:
1) решать ряд новых задач в исследованиях кинетики фотосинтеза и транспирации высших растений, в частности в исследовании механизма засухоустойчивости и следовательно продуктивности культур;
2) при наличии нормативных газометрических систем - они уже производятся в США и Англии - повысить точность результатов исследований в экологической физиологии растений;
3) проводить экспериментальные исследования независимо от наличия дорогостоящего гелия. Первый, основной вариант предлагаемого способа реализован в Институте почвоведения и фотосинтеза АН СССР.
Формула изобретения
Aio=

Ain=

Rao=

Ran=

Cio=

Cin=

Rco=

Rcn=

где символ "о" указывает на отношение соответствующего параметра к верхней стороне листа, а "n" - к нижней стороне;
Ai0, Ain, Ci0, и Cin - концентрация над поверхностью жидкой фазы внутри листа H2O-пара (А) и CO2(C) соответственно;
Raо, Ran, Rcо и Rcn - диффузионные сопротивления потокам H2O-пара и CO2 в газовой фазе листа;
A01, An1, C01 и Cn1 - исходные концентрации H2O-пара и CO2 в воздухе над листом;
A02, An2, C02 и Cn2 - концентрации H2O-пара и CO2 в воздухе над листом, установившиеся после компенсации;
E01, En1, F01 и Fn1 - исходные скорости транспирации и ассимиляции CO2;
E02, Nn2, F02 и Fn2 - скорости транспирации и ассимиляции CO2, установившиеся после компенсации;
2. Способ по п. 1, отличающийся тем, что, с целью одновременного и дифференцированного определения кинетических параметров H2O- и CO2 - газообмена листьев растений в полевых условиях, концентрации H2O-пара и CO2 в воздухе над листом в открытой газометрической системе изменяют варьированием расхода воздуха через листовую камеру.