Преобразователь перемещения в код
Изобретение относится к автоматике и вычислительной технике и может быть использовано для автоматического измерения углового положения объекта. Цель изобретения - повышение точности преобразователя, которая достигается за счет компенсации погрешности преобразователя, вызванной несоответствием амплитуд сигналов питания датчика требуемым значениям, для чего преобразователь перемещения в код содержит генератор, три преобразователя кодов, инвертор, компаратор, интегратор, четыре цифроаналоговых преобразователя, датчик, два коммутатора, усилитель, два фазочувствительных выпрямителя, два преобразователя напряжения в частоту, два сумматора, два реверсивных счетчика и цифровой мультиплексор. В преобразователе осуществляются формирование цифрового кода, пропорционального ошибке преобразования угла, и учет его значения в процессе определения истинного значения угла поворота ротора датчика. 1 ил.
Изобретение относится к автоматике и вычислительной технике и может быть использовано для автоматического измерения положения объекта.
Преобразователи перемещения в код нашли широкое применение в различных отраслях промышленности, в частности в станкостроении. К преобразователям углового перемещения в код предъявляются жесткие требования по точности преобразования, ресурсу, сохранению точностных параметров в эксплуатации. Преобразователь углового перемещения в код состоит из датчика угла, преобразующего первичную информацию в электрический сигнал, и электронного блока Наиболее распространенными датчиками угла являются синусо-косинусные вращающиеся трансформаторы (СКВТ). Для преобразователей с СКВТ в амплитудном или фазовом режиме характерна погрешность преобразования, обусловленная неортогональностью обмоток, неравенством коэффициентов трансформации между входными и выходными обмотками СКВТ и отклонениями параметров питания датчика от требуемых при эксплуатации преобразователя. При этом погрешности каждого образца датчика угла, обусловленные указанными выше факторами, достаточно стабильны и могут быть учтены при эксплуатации преобразователя, в то время как погрешности из-за нестабильности параметров питания датчика изменяются в зависимости от температуры окружающей среды, хранения преобразователя, наработки и других внешних воздействующих факторов. Это особенно характерно для высокоточных преобразователей перемещения в код с СКВТ с торцовыми печатными обмотками-индуктосинами, обладающими высокой точностью преобразования углового перемещения в электрический сигнал и стабильностью параметров в эксплуатации. Известен преобразователь перемещения в код, в котором питание двух входных ортогональных обмоток индуктосина осуществляется широтно-амплитудно-импульсными сигналами, изменяющимися по длительности и амплитуде в функции числа, пропорционального взаимному положению входных и выходных обмоток датчика [1] . Недостатком преобразователя является большая погрешность преобразования, обусловленная несоответствием амплитуд сигналов питания датчика угла требуемым значениям. Известен также преобразователь перемещения в код, в котором питание двух входных ортогональных обмоток датчика угла осуществляется импульсными сигналами, длительность которых является функцией числа, пропорционального взаимному положению входных и выходных обмоток датчика [2] . Как и в первом случае недостатком преобразователя является большая погрешность преобразования, обусловленная несоответствием амплитуд сигналов питания датчика требуемым значениям. Наиболее близким по технической сущности к изобретению является преобразователь перемещения в код [3] , содержащий задающий генератор, цифроаналоговый преобразователь (ЦАП), датчик перемещений, усилитель, интегратор, блок управления, блок компараторов, два ключа и реверсивный счетчик, причем выходы ЦАП подключены к первому и второму входам датчика перемещений, выход которого через усилитель подключен к первому входу блока управления, первый и второй выходы которого соединены соответственно с первым и вторым входами реверсивного счетчика, а третий и четвертый выходы подключены к первым входам первого и второго ключей соответственно, выходы реверсивного счетчика подключены к цифровым входам ЦАП, соединенного аналоговым входом с выходом задающего генератора и входом интегратора, выход которого соединен с входом блока компараторов, первый выход которого подключен к второму входу блока управления, а второй выход - к вторым входам первого и второго ключей, выходы которых соединены со счетными входами реверсивного счетчика. В этом преобразователе на выходах ЦАП формируются два синусоидальных сигнала питания датчика, амплитуды которых промодулированы в функции синуса и косинуса числа, зафиксированного в реверсивном счетчике. Сигнал рассогласования, формируемый на выходной обмотке датчика, с помощью фазочувствительного устройства управляет работой реверсивного счетчика. При этом блок управления формирует сигналы, задающие знак на входы сложения и вычитания реверсивного счетчика и ограничивающие интервал подсчета импульсов в счетчике моментом времени, при котором значение кода, зафиксированное в реверсивном счетчике, соответствует нулевому значению сигнала рассогласования на выходе фазочувствительного устройства. Недостатком такого преобразователя является ограниченная точность преобразования углового перемещения в код, обусловленная несоответствием амплитуд сигналов питания датчика требуемым значениям. Цель изобретения заключается в повышении точности преобразователя. Цель достигается тем, что в преобразователь перемещения в код, содержащий генератор, выход которого соединен с входом интегратора и с опорными входами первого и второго ЦАП, выходы которых соединены с входами датчика, выход которого через усилитель соединен с первым входом первого фазочувствительного выпрямителя, второй вход которого подключен к выходу интегратора, а выход соединен с входом первого преобразователя напряжения в частоту, положительный и отрицательный выходы которого соединены соответственно с входами сложения и вычитания первого реверсивного счетчика, счетчика, выходы которого являются выходами преобразователя и соединены с входами первого и второго преобразователей кодов, выходы последнего из которых соединены цифровыми входами первого ЦАП, первый и второй коммутаторы и компаратор, введены инвертор, третий и четвертый ЦАП, первый и второй сумматоры, второй фазочувствительный выпрямитель, второй преобразователь напряжения в частоту, второй реверсивный счетчик, цифровой мультиплектор и третий преобразователь кодов, выходы которого соединены с цифровыми входами второго ЦАП, выход которого и выход первого ЦАП соединены с информационными входами соответственно первого и второго коммутаторов, при этом выход генератора соединен с первым входом второго фазочувствительного выпрямителя и входом компаратора, выход которого соединен с управляющим входом цифрового мультиплексора, с входом инвертора и первыми управляющими входами первого и второго коммутаторов, вторые управляющие входы которых подключены к выходу инвертора, первые выходы соединены с входами опорного напряжения соответственно третьего и четвертого ЦАП, а вторые выходы - с входами опорного напряжения соответственно четвертого и третьего ЦАП, выходы которых соединены с входами первого сумматора, выход которого соединен с вторым входом фазочувствительного выпрямителя, выход которого соединен с входом второго преобразователя напряжения в частоту, положительный и отрицательный выходы которого соединены с входами соответственно сложения и вычитания второго реверсивного счетчика, выходы которого соединены с первой группой входов второго сумматора, вторая группа входов которого подключена к выходам первого реверсивного счетчика, а выходы соединены с входами третьего преобразователя кодов, выходы первого и второго преобразователей кодов соединены соответственно с первой и второй группами информационных входов цифрового мультиплексора, первая и вторая группы выходов которого соединены с цифровыми входами соответственно третьего и четвертого ЦАП. Сопоставительный анализ с прототипом показывает, что заявляемый преобразователь отличается наличием новых блоков: инвертора, двух ЦАП, двух сумматоров, фазочувствительного выпрямителя, преобразователя напряжения в частоту, реверсивного счетчика, цифрового мультиплексора и преобразователя кодов. Таким образом, он соответствует критерию изобретения "новизна". Сравнение заявляемого решения не только с прототипом, но и с другими техническими решениями в данной области техники показывает, что указанные блоки широко известны. Однако при их введении в указанной связи с остальными блоками в заявляемый преобразователь углового перемещения в цифровой код они проявляют новые свойства, что приводит к повышению точности преобразователя за счет компенсации несоответствия амплитуд сигналов питания датчика, требуемым значениям. Это позволяет сделать вывод о соответствии технического решения критеpию "существенные отличия". На чертеже представлена функциональная схема преобразователя перемещения в код. Преобразователь перемещения в код содержит генератор 1, преобразователь 2 кодов, компаратор 3, инвертор 4, интегратор 5, ЦАП 6, 7, датчик 8, коммутаторы 9, 10, усилитель 11, фазочувствительный выпрямитель 12, ЦАП 13, 14, преобразователь 15 напряжения в частоту, сумматор 16, реверсивный счетчик 17, фазочувствительный выпрямитель 18, преобразователь 19 напряжения в частоту, преобразователи 20, 21 кодов, реверсивный счетчик 22, сумматор 23, цифровой мультиплексор 24. Выход генератора 1 соединен с входами компаратора 3, интегратора 5, первым входом фазочувствительного выпрямителя 18 и входами опорного напряжения ЦАП 6 и 7, выходы которых соединены соответственно с входами коммутаторов 10 и 9 и первым и вторым входами датчика 8, соединенного выходом через последовательно включенный усилитель 11 с первым входом фазочувствительного выпрямителя 12, второй вход которого соединен с выходом интегратора 5, а выход - с входом преобразователя 15 напряжения в частоту. Положительный и отрицательный выходы последнего соединены соответственно с входами сложения и вычитания реверсивного счетчика 17, выходы которого являются выходами преобразователя перемещения в код и соединены с первой группой входов сумматора 23, через последовательно включенный преобразователь 20 кодов с первой группой входов цифрового мультиплексора 24, через последовательно включенный преобразователь 21 кодов с цифровым входом ЦАП 6 и второй группой входов цифрового мультиплексора 24. Первая и вторая группы выходов мультиплексора соединены соответственно с цифровыми входами ЦАП 13 и 14, а управляющий вход соединен с выходом компаратора 3, объединенными первыми управляющими входами коммутаторов 9, 10 и входом инвертора 4, соединенного выходом с объединенными вторыми управляющими входами коммутаторов 9, 10, первые объединенные выходы которых соединены с входом опорного напряжения ЦАП 13, а вторые объединенные выходы с входом опорного напряжения ЦАП 14. Выход ЦАП 14 соединен с вторым входом сумматора 16, соединенного первым входом с выходом ЦАП 13, а выходом - с вторым входом фазочувствительного выпрямителя 18, выход которого соединен с входом преобразователя 19 напряжения в частоту, соединенного положительным и отрицательным выходами соответственно с входами сложения и вычитания реверсивного счетчика 22. Выходы счетчика 22 соединены с второй группой входов сумматора 23, соединенного выходами через последовательно включенный преобразователь 2 кодов с цифровым входом ЦАП 7. Преобразователь перемещения в код работает следующим образом. При включении источника питания (на чертеже не показан) на выходах реверсивного счетчика 17 устанавливается произвольное значение кода















































U3 = sin



- K6Um2 cos(



U4 = K5Um1 sin


- K6Um2 cos(



В течение второго полупериода напряжения Umsin








U5 = K5Um2 cos(



- K6Um1 sin


Напряжения U4 и U5 поступают на вход преобразователя 19 напряжения в частоту, который формирует на положительном или отрицательном выходе в зависимости от знаков напряжений U4 и U5импульсы, поступающие соответственно на вход сложения или вход вычитания реверсивного счетчика 23, изменяя значение кода

Um1 sin




+ Um2 . cos(




. sin


Из уравнения (7) может быть определено значение
cos(













2. Авторское свидетельство СССР N 746651, кл. Н 03 М 1/64, 1980. 3. Патент США N 3537102, кл. 340-347, опублик. 1970.
Формула изобретения
РИСУНКИ
Рисунок 1