Способ коррекции погрешностей аналого-цифрового преобразования
Изобретение относится к измерительной технике и может использоваться в информационно-измерительных системах и измерительно-вычислительных комплексах для коррекции погрешностей аналого-цифрового преобразования, связанных с нелинейностью и изменением параметров функции преобразования. Целью изобретения является исключение динамической погрешности в работе коррекции при преобразовании изменяющихся во времени сигналов. Цель достигается за счет запоминания двух предыдущих значений скорректированного кода входного сигнала, при этом процесс коррекции осуществляется согласно итерационной формуле: , где i - циклы коррекций. Останов цикла коррекции происходит по признаку
, при этом скорректированный выходной код, начиная с j = 3, содержит динамическую поправку на изменение во времени входного сигнала Xскnj=Xnj+{[Xn(j-1)-Xn(j-2)]/n(j-1)T0}
njT0, j - нумерация последовательности n циклов коррекции. 3 ил.
Изобретение относится к измерительной технике и может использоваться в информационно-измерительных системах и информационно-вычислительных комплексах (ИВК) для коррекции погрешностей аналого-цифрового преобразования, связанных с нелинейностью и с изменением параметров функции преобразования.
Известны итерационные способы коррекции погрешностей аналого-цифрового преобразователя [1] , а также применение кусочно-линейной аппроксимации участков характеристики преобразователя в алгоритмах коррекции [2] . Недостатком указанных способов является тот факт, что алгоритмы коррекции не учитывают изменение во времени входного сигнала, что ограничивает область их применения. Наиболее близок к изобретению способ коррекции погрешностей аналого-цифрового преобразования [3] , где в алгоритме коррекции используется метод решения нелинейной задачи, известный как метод касательных Ньютона. Этот способ обеспечивает коррекцию погрешностей аналого-цифрового преобразования с высокой точностью и быстродействием, однако изменение входного сигнала во времени алгоритм коррекции не учитывает. Целью изобретения является повышение точности коррекции погрешностей для случая аналого-цифрового преобразования изменяющихся во времени сигналов. Отличие от прототипа предполагаемого способа коррекции заключается в том, что два предыдущих значения скорректированного кода входного сигнала запоминаются, что позволяет ввести в алгоритм вычисления скорректированного кода входного сигнала динамическую поправку на изменение входного сигнала во времени. Динамическая поправка является результатом линейной экстраполяции временной зависимости входного сигнала на данный j-й интервал коррекции погрешностей, содержащей nj циклов, за счет использования результатов n(j-1) и n(j-2) циклов коррекции. Формирование алгоритма коррекции с динамической поправкой показано на фиг. 1. Реализация прилагаемого способа коррекции иллюстрируется на ИВК, блок-схема которого представлена на фиг. 2. В ИВК входят вычислительный комплекс 1 с оперативным запоминающим устройством 2 и вычислителем 3, магистраль 4 типа "общая шина", аналого-цифровой преобразователь (АЦП) 5, входной коммутатор 6 аналоговых сигналов и прецизионный цифроаналоговый преобразователь (ЦАП) 7. Управление АЦП, ЦАП и коммутатором осуществляет ИВК через магистраль "общая шина", с помощью которого также производится обмен информацией между вычислителем и измерительными преобразователями. ИВК, реализующий данный способ, действует следующим образом. Входной сигнал, например, пусть изменяется как показано на фиг. 1. Поскольку ИВК многократно подключает входной сигнал в силу его изменения во времени, для различения n циклов коррекций при разных значениях входного сигнала вводят индекс j измерений этих циклов коррекций, т. е. в дальнейшем оперируют nj циклами коррекций погрешности преобразованных с помощью АЦП входных сигналов. В предлагаемом способе используется известный принцип линейной экстраполяции временной зависимости входного сигнала, что можно записать в виде xскnj = xnj+{ [xn(j-1)xn(j-2)] /[n(j-1)To] }









- результаты аналого-цифрового преобразования первого и второго промежуточных сигналов;
К - код величины образцового сигнала;






xnj - скорректированный код входного сигнала в конце цикла коррекций. Для j = 1 и j = 2 соответственно xn1 и xn2 не имеют динамическую поправку. Начиная с j = 3, в выражения для скорректированных кодов входных сигналов вводятся динамические поправки

xскnj = x(nj)+{ [xn(j-1)-xn(j-2)] /[n(j-1)To] }






xnjск = xnj + [xn(j-1) - xn(j-2)] . (56) 1. Алиев Т. М. и др. Автоматическая коррекция погрешностей цифровых измерительных приборов. М. : Энергия, 1975. 2. Авторское свидетельство СССР N 984030, кл. Н 03 М 1/06, 1982. 3. Авторское свидетельство СССР N 1714808, кл. Н 03 М 1/10, 1992.
Формула изобретения
xij = x(i-1)j+

где i = 1, . . . , n - нумерация циклов коррекции погрешностей аналого-цифрового преобразования;
j - нумерация последовательности nj циклов коррекции погрешностей аналого-цифрового преобразования входного сигнала, где интервалы временной последовательности определяются длительностью njT0циклов коррекции;
T0 - длительность одного цикла коррекции;
xij ; x(i-1)j - скорректированные коды входных сигналов в i-й и (i - 1)-й циклы коррекций для j-го преобразования входного сигнала;

Y(i-1)j= F

Y(i-1)j= F

K - код величины образцового сигнала;

[xn(j-1)-xn(j-2)] - динамическая поправка, учитывающая изменение во времени входного сигнала.
РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3