Способ регулирования радиального зазора между концами лопаток ротора и корпусом турбомашины газотурбинного двигателя
Использование: энергетическое машиностроение. Сущность: регулирование радиального зазора между концами лопаток ротора и корпусом турбомашины производят путем осевого смещения ротора относительно корпуса. Предварительно измеряют внутридвигательный параметр, характеризующий осевое смещение ротора, определяют пороговое значение этого параметра, соответствующее необходимому радиальному зазору, при достижении которого производят подачу охладителя на поверхность вала турбомашины. Определяют требуемую величину подогрева охладителя в зависимости от внутридвигательного параметра, вычисляют физическую величину подогрева охладителя, сравнивают ее с требуемой величиной подогрева охладителя и по результату сравнения смещают ротор относительно корпуса изменением расхода охладителя. 2 з. п. ф-лы, 4 ил.
Изобретение относится к энергетическому машиностроению, а более конкретно к авиационным газотурбинным двигателям.
Одним из путей повышения экономичности газотурбинных двигателей и турбомашин является регулирование радиальных зазоров между концами рабочих лопаток и уплотнительными бандажными кольцами. Известен способ регулирования радиальных зазоров между торцами лопаток ротора и наружным уплотнением за счет обдува корпусов турбины холодным воздухом [1] . Однако для некоторых турбин и компрессоров, особенно с конической проточной частью, на величину радиальных зазоров оказывают влияние не только изменение диаметральных размеров статора, ротора, но и их взаимное осевое смешение. Уменьшение диаметральных размеров корпуса под влиянием охлаждения сопровождается одновременно уменьшением осевого температурного расширения корпуса и изменением положения статора относительно ротора, что приводит к еще большему, чем без обдува изменению установленных при сборке долевых зазоров и изменению радиальных зазоров. В зависимости от положения, фиксирующего ротор и корпус подшипника, радиальные зазоры могут от осевого смещения увеличиваться или уменьшаться. При увеличении зазоров эффективность обдува корпусов снижается. Известен способ при котором для регулирования величины зазора между лопатками и корпусом используется перемещение ротора за счет гидростатического подпятника в соответствии с замером датчика радиального зазора, установленного на корпусе [2] . Привод осевого смещения может работать в системе автоматического регулирования с обратной связью по датчику замера радиального зазора, который устанавливается на внутренней стороне корпуса, а также по датчику аварийного контроля минимального зазора. Однако замер радиального зазора в одной или нескольких точках может привести к искажению истинного уровня радиальных зазоров и неправильному их регулированию. Кроме того, используемые в устройстве детали работают в условиях значительных температур и деформаций, что также снижает их надежность. Техническая задача, на решение которой направлено изобретение, заключается в повышении надежности и экономичности газотурбинного двигателя путем изменения осевого смещения ротора относительно корпуса. Сущность предложенного способа регулирования радиального зазора между концами лопаток ротора и коpпусом турбомашины газотурбинного двигателя путем осевого смещения ротора относительно корпуса заключается в том, что предварительно измеряют внутридвигательный параметр, характеризующий осевое смещение ротора, определяют пороговое значение этого параметра, соответствующее необходимому радиальному зазору, при достижении которого производят подачу охладителя на поверхность вала турбомашины, определяют требуемую величину подогрева охладителя в зависимости от внутридвигательного параметра, вычисляют физическую величину подогрева охладителя, сравнивают ее с требуемой величиной подогрева охладителя и по результату сравнения смещают ротор относительно корпуса изменением расхода охладителя. В качестве охладителя используют масло или воздух. При охлаждении участков вала, находящихся в масляных полостях - маслом, а в воздушных полостях-воздухом низкого давления, отбираемым из-за передних ступеней компрессора, экономится воздух высокого давления, отбираемый в компрессоре для перемещения кольца из-за последней ступеней, что повышает экономичность двигателя. На фиг. 1 изображен общий вид газотурбинного двигателя; на фиг. 2 - узел I на фиг. 1; на фиг. 3 - узел II на фиг. 1; на фиг. 4 изображена схема одного из возможных устройств для осуществления предложенного способа. Газотурбинный двигатель 1 содержит две системы, не имеющие между собой механической связи; вентилятор 2 с подпорными ступенями - турбина низкого давления 3; компрессор 4 высокого давления - турбина высокого давления 5. Каждая система состоит из статорных 6 (неподвижных и роторных 7 (вращающихся) деталей. Статорные детали 6 имеют корпусы 8, разрезные уплотнительные кольца 9, закрепленные на корпусах 8 и статорные сопловые лопатки (на чертежах не показаны). Роторы 7 любой указанной системы содержат рабочие лопатки 10, диски 11, валы 12 и установлены на подшипниках 13, один из которых )чаще шариковый 14) является местом заделки ротора относительно статора и точкой отсчета их теплового расширения относительно друг друга. Разрезное кольцо 9 любой ступени турбины, компрессора образуют с торцами рабочих лопаток 10 соответствующих ступеней радиальные зазоры 15. При запуске и работе двигателя его детали нагреваются. За счет осевого расширения наблюдается осевое смещение роторов 7 относительно статора 6 и увеличение долевых зазоров. Величина смещения













Формула изобретения
1. СПОСОБ РЕГУЛИРОВАНИЯ РАДИАЛЬНОГО ЗАЗОРА МЕЖДУ КОНЦАМИ ЛОПАТОК РОТОРА И КОРПУСОМ ТУРБОМАШИНЫ ГАЗОТУРБИННОГО ДВИГАТЕЛЯ путем осевого смещения ротора относительно корпуса, отличающийся тем, что предварительно измеряют внутридвигательный параметр, характеризующий осевое смещение ротора, определяют пороговое значение этого параметра, соответствующее необходимому радиальному зазору, по достижении которого производят подачу охладителя на поверхность вала турбомашины, определяют требуемую величину подогрева охладителя в зависимости от внутридвигательного параметра, вычисляют физическую величину подогрева охладителя, сравнивают физическую с требуемой величиной подогрева охладителя и по результату сравнения смещают ротор относительно корпуса изменением расхода охладителя. 2. Способ по п. 1, отличающийся тем, что в качестве охладителя используют масло. 3. Способ по п. 1, отличающийся тем, что в качестве охладителя используют воздух.РИСУНКИ
Рисунок 1, Рисунок 2, Рисунок 3, Рисунок 4