Способ определения характеристик микроскопических фигур травления кристаллов

 

Изобретение относится к кристаллографии и исследованию физических и химических свойств кристаллов и может быть использовано при определении качества поверхности, распределения субзерен и дефектов. Целью изобретения является повышение экспрессности и расширение возможностей способа. Способ осуществляется следующим образом. На пластину кристалла с микроскопическими фигурами травления направляют возбуждающее излучение. В точке возбуждения возникает источник люминесцентного или рассеянного излучения, который рассматривается через поверхность, содержащую микрорельеф. В результате преломления люминесцентного или рассеянного излучения на микроскопических фигурах травления возникает несколько изображений источника, представляющих собой световые точки или пятна, локализованные в плоскости пластины. Симметрии наблюдавшейся световой фигуры отражает структуру фигур травления. Измеряя размер источника света, толщину образца и размер светового пятна, можно по дифракционному уширению изображения источника определить средний размер фигур травления, высоту фигур травления, плотность упаковки фигур травления. 1 ил.

Изобретение относится к кристаллографии и исследованию физических и химических свойств кристаллов и может быть использовано при определении качества поверхности, распределения субзерен и дефектов. Целью изобретения является повышение экспрессности и расширение возможностей способа. Способ осуществляется следующим образом. На пластину кристалла с микроскопическими фигурами травления направляют возбуждающее излучение или излучение из области прозрачности кристалла. В первом случае падающее излучение возбуждает люминесценцию в точке на поверхности, противоположной травленной. В качестве возбуждающего излучения может быть использован свет с энергией квантов больше ширины запрещенной зоны, рентгеновские лучи или электронные пучки. В точке возбуждения возникает источник люминесцентного и рассеянного излучения, который рассматривается через поверхность, содержащую микрорельеф. В результате преломления света на микроскопических фигурах травления возникает несколько изображений источника, представляющих собой световые точки или пятна, локализованные в плоскости пластины. Количество этих точек зависит от симметрии фигур травления и от набора углов наклона граней ямок и бугорков травления. Симметрия наблюдающейся световой фигуры отражает структуру фигур травления. Коэффициент дифракционного уширения К определяется разностью линейных размеров элементов световой фигуры а и источника света l. Если l мало, то коэффициент дифракционного уширения определяется только величиной а. На чертеже показан ход лучей света от источника в точке О в сечении полупроводниковой пластины. Лучи 1 в интервале углов претерпевают полное внутреннее отражение на гранях фигур травления; лучи 2 преломляются на них, попадая в объектив, лучи 3 и 4 отклоняются в сторону. Лучи 2 формируют световые точки, которые могут создаваться и при преломлении с последующим отражением от внешних сторон граней (лучи 5). Размер каждой световой точки определяется, в первую очередь, размером источника, толщиной образца, дифракцией света. Между угловым размером световой фигуры, показателем преломления n и углом наклона грани фигуры травления имеется простое соотношение 3= arcsin (для лучей 2) (1); 5= arcsin (для лучей 5) (2) Если на кристалл падает свет из области прозрачности, то источник света создается при рассеянии на травленной поверхности. Дифракция света приводит к тому, что угловой размер изображения источника увеличивается на = 3-arcsin(sin3- ) с внешней сторона и на arcsin sin 3+ -3 с внутренней стороны. Следовательно, лучи 2 будут попадать в объектив в интервале углов (3 -'', 3+''). Поперечный размер изображения равен а= l+dК, где К коэффициент дифракционного уширения: K + (3) Дифракционное уширение существенно для поперечных размеров b фигур травления от нескольких длин волн до нескольких десятков . Измеряя размер источника света, толщину образца и размер светового пятна, можно по дифракционному уширению изобретения источника определить средний размер фигур травления, число которых максимально, а также плотность их упаковки по формуле N=b-2. Из соотношения h определяют высоту фигур травления h т.е. среднюю высоту микрорельефа. П р и м е р. На пластину из гексагонального монокристалла СdS с ориентацией (0001) толщиной 1 мм, содержащую микрорельеф после механической или химической полировки и последующего травления в концентрированной соляной кислоте в течении 30 с фокусируют луч азотного лазера с плотностью мощности излучения 0,001-10 МВТ/см2. Размер люминесцентного пятна равен 0,1-0,5 мм. Со стороны травленной поверхности наблюдают яркосветящееся зеленое кольцо. Кольцевая форма свидетельствует о том, что фигуры травления представляют собой конусы или бугорки без четкой огранки. Измеряют 340о, из формулы (1) находят угол наклона образующей конусов 31,5о (n=2,64). Средний размер фигур травления b=0,3-0,5 мкм, плотность 3.108-7.109 см-2. Из формулы L h=0,25-0,5 мкм. При размерах фигур травления b 0,1-0,3 мкм, которые получают при уменьшении времени травления, световое кольцо теряет четкость.

Формула изобретения

СПОСОБ ОПРЕДЕЛЕНИЯ ХАРАКТЕРИСТИК МИКРОСКОПИЧЕСКИХ ФИГУР ТРАВЛЕНИЯ КРИСТАЛЛОВ, основанный на воздействии излучением на кристалл, измерении структуры и угловых размеров световых фигур, отличающийся тем, что, с целью повышения экспрессности и расширения возможностей способа, на входную поверхность кристалла воздействуют излучением, возбуждающим люминесцентное или рассеянное излучение точечного источника, дополнительно измеряют коэффициент дифракционного уширения элементов световых фигур, образованных на выходной поверхности кристалла люминесцентным или рассеянным излучением, находят форму, углы наклона граней, размеры и плотность упаковки фигур травления, по которым судят о характеристиках микроскопических фигур травления.

РИСУНКИ

Рисунок 1



 

Похожие патенты:

Изобретение относится к целлюлозно-бумажной промышленности и позволяет повысить оперативность контроля и улучшить качество целлюлозы

Изобретение относится к области аналитической химии, спектральному анализу, к технико-технологическим исследованиям материалов живописи

Изобретение относится к аналитической химии

Изобретение относится к аналитической химии редкоземельных элементов , в частности европия, и мо- .жет быть использовано для анализа растворов лантоноидов на содержание европия

Изобретение относится к контрольно-измерительной технике и может быть использовано для определения временных характеристик затухающих процессов, в частности для измерения времени послесвечения люминофоров

Изобретение относится к использованию жидких сред люминесцентными методами

Изобретение относится к спектроскопии и может быть использовано для регистрации спектра люминесценции в УФ- и ИК-диапазонах

Изобретение относится к экспериментальным методам ядерной физики и может быть использовано при решении различных задач технической физики
Изобретение относится к экспериментальным методам физики и может быть использовано при создании систем маркировки и идентификации контролируемых объектов

Изобретение относится к аналитической химии, а именно к качественному и количественному определению нитропроизводных полициклических ароматических углеводородов (нитро-ПАУ) в сложных смесях и растворах

Изобретение относится к установке контроля для отбора проб и определения наличия некоторых веществ, например остатков загрязнений в емкостях, например, в стеклянных или пластмассовых бутылках

Изобретение относится к медицине, а точнее к области бесконтактной клинической диагностики злокачественных новообразований и области их локализации in vivo в живом организме на основе флуоресценции эндогенных порфиринов

Изобретение относится к области измерительной техники

Изобретение относится к медицинской технике, а именно к спектрофотометрическим приборам для контроля (диагностики) состояния биологической ткани

Изобретение относится к биотехнологии

Изобретение относится к аналитической химии
Наверх