Оптический диск

 

Полезная модель относится к устройствам трехмерной оптической памяти и может быть использована во всех областях вычислительной техники, где требуется производить запись больших массивов информации на компактные носители. Так же возможно использование данного устройства для записи. хранения и воспроизведения видео-аудио записей. Оптический диск состоит из последовательности чередующихся слоев оптически прозрачных материалов, объединенных в группы, включающие в себя слой из материала с показателем преломления n1, заключенный между слоем из материала с показателем преломления n2, удовлетворяющим соотношению n 2<n1, и слоем из материала с показателем преломления n3, удовлетворяющим соотношению |n 3-n1|<0.001, при этом слой с показателем преломления n3 содержит фоточувствительное соединение, которое может существовать в двух формах, характеризующихся разными оптическими свойствами.

3 илл.

Полезная модель относится к устройствам трехмерной оптической памяти и может быть использована во всех областях вычислительной техники, где требуется производить запись больших массивов информации на компактные носители.

При создании оптических дисков с большим числом информационных слоев одной из основных проблем является адресация информационного слоя при считывании данных. В известных одно- и двухслойных оптических дисках считывающее излучение доставляется к информационному слою через плоскую поверхность диска. Однако, если число слоев возрастает, то возникают большие проблемы с определением номера информационного слоя, из которого принимается сигнал, содержащий записанные на него данные. Эта проблема решается за счет направления считывающего излучения в специальный волноводный слой, расположенный вблизи адресуемого информационного слоя диска через его боковую (цилиндрическую) поверхность.

Известен оптический диск (патентная заявка США 2008/0305324 А1, опубл. 11.12.2008, В32В 17/10), включающий несколько информационных слоев, разделенных между собой по крайней мере двумя изолирующими слоями, выполненными из полимеров с различными механическими свойствами. Один из изолирующих слоев обладает повышенной жесткостью за счет введения в него наполнителя и имеет толщину от 5 до 15 микрон, другой - повышенной упругостью и имеет толщину от 10 до 50 микрон. Описанная конструкция обеспечивает высокие механические свойства многослойного оптического диска, а именно - деформационную стойкость. Однако, данный диск не предназначен для использования в считывающих устройствах с высокой точностью адресации, т.к. его конструкция не предполагает наличия волноводного слоя и не предусматривает возможности ввода считывающего излучения через его боковую поверхность.

Известен оптический диск (патент США 7449278 В2, опубл. 11.11.2008, G11В 7/24), включающий последовательно расположенные группы слоев, причем каждая группа состоит из трех слоев: информационного слоя, в котором под действием излучения с длиной волны 1 возникают фотохимические процессы, приводящие к изменению оптических свойств материала, из которого выполнен информационный слой, фотохромного слоя, отражательная способность которого увеличивается по действием излучения с длиной волны 2, и волноводного слоя, предназначенного для распространения в нем излучения с длиной волны 2, введенного в многослойный диск через его боковую поверхность. В данном диске надежность адресации данных выше, чем у вышеприведенного аналога, т.к. в режиме считывания отражающий фотохромный слой изолирует приемник данных от сигналов, поступающих на него из нижележащих информационных слоев, однако, сигналы, поступающие из вышележащих не адресуемых информационных слоев по прежнему могут достигать приемника, уменьшая надежность считывания данных.

Наиболее близким по технической сущности к заявляемой полезной модели и принятым за прототип является оптический диск (патент США 6045888, опубл. 04.04.2000, В32В 3/00), состоящий из последовательности чередующихся слоев оптически прозрачных материалов, объединенных в группы, включающие в себя слой стекла толщиной 140 мкм с показателем преломления n1=1.515 заключенный между слоем полимера с показателем преломления n2, удовлетворяющим соотношению n2<n1, и слоем фотохромного материала с показателем преломления n3=1.47, который может изменять свои оптические свойства под действием излучения с длиной волны 1 и приобретать способность флуоресцировать под действием излучения с длиной волны 2 на длине волны 3. При считывании информации излучение с длиной волны 2 направляют в данный многослойный оптический диск через его боковую поверхность в слой стекла. При волноводном распространении света в стекле лишь незначительная часть мощности излучения в виде эванесцентной моды проникает в информационный слой фотохромного материала. Поэтому величина сигналов, поступающих на приемник излучения на длине волны 3 от тех участков (пикселей) прилежащего к стеклу информационного слоя, которые были ранее освещены излучением с длиной волны 1 и содержат биты информации, очень мала. Для того, чтобы увеличить отношение сигнал шум и добиться надежной регистрации излучения на длине волны 3 поперечные размеры пикселов в плоскости фотохромного слоя необходимо увеличивать, что приводит к уменьшению информационной емкости многослойного оптического диска.

Технический результат, на достижение которого направлена заявляемая полезная модель, состоит в повышении информационной емкости многослойного оптического диска с одновременным повышением надежности считывания записанной информации.

Указанный технический результат достигается тем, что в оптическом диске, включающем последовательность чередующихся слоев оптически прозрачных материалов, объединенных в группы, включающие в себя волноводный слой материала с показателем преломления n1, заключенный между изолирующим слоем материала с показателем преломления n2, удовлетворяющим соотношению n2<n1, и информационным слоем фотохромного материала с показателем преломления n 3, показатели преломления материалов волноводного и информационного слоев удовлетворяют условию |n3-n1|<0.001, толщина информационного слоя d удовлетворяет условию 1 мкм<d<10 мкм, толщина волноводного слоя D удовлетворяет условию 5 мкм<D<100 мкм, а толщина изолирующего слоя удовлетворяет условию 1 мкм<<5 мкм.

Сущность полезной модели поясняется чертежами, где на фиг.1 показан общий вид оптического диска 1 с фокусирующей системой 2 и устройством считывания информации 3; на фиг.2 изображены характерные спектры поглощения фотохромного материала в исходном (сплошная линия) и измененном (штриховая линия) под действием излучения с длиной волны 1 состояниях, а также спектр флуоресценции (пунктирная линия) под действием излучения с длиной волны 2; на фиг.3 представлен фрагмент оптического диска 1 в разрезе с волноводными слоями 4, изолирующими слоями 5, информационными слоями 6 и пикселем 7 информационного слоя 6, взаимодействующим с волноводной модой излучения с длиной волны 12.

Сущность полезной модели состоит в следующем. Величина сигнала излучения на длине волны 3 пропорциональна произведению интенсивности считывающего излучения на длине волны 2 на объем пикселя 7. Если абсолютная величина разности показателей преломления материалов волноводного 4 и прилежащего к нему информационного 6 слоев в многослойном оптическом диске 1 не превышает заявленного значения 0.001, то волноводная мода считывающего излучения с длиной волны 2 распространяется в этих двух слоях без деформации и затухания как в едином волноводном слое. Интенсивность волноводной моды во много раз превышает интенсивность эванесцентной моды, следовательно величина сигнала излучения флуоресценции на длине волны 3 будет значительно выше даже в том случае, если объем пикселя 7 будет в несколько раз уменьшен за счет уменьшения его площади в плоскости информационного слоя. Другими словами, в заявляемой полезной модели можно рассчитывать на одновременное повышение плотности записи и надежности считывания записанной информации. Следует отметить, что толщину информационного слоя 6 не следует выбирать слишком большой. Дело в том, что показатели преломления фотохромного материала в исходном и измененном под действием излучения с длиной волны 1 состояниях несколько различаются. В связи с этим в результате записи данных в информационном слое 6 увеличивается рассеяние света. Это может приводить к деформации и затуханию волноводной моды считывающего излучения. Заявляемая абсолютная величина разности показателей преломления материалов волноводного 4 и прилежащего к нему информационного 6 слоев, равная 0.001 весьма существенна. Превышение этого значения будет приводить к тому, что волноводная мода будет распространяться в слое, показатель преломления материала которого больше: либо в волноводном 4 (тогда заявляемая полезная модель будет тождественна прототипу), либо в информационном (тогда оптические неоднородности фотохромного материала будут вызывать рассеяние и деградацию считывающего излучения).

В примере наилучшей реализации полезной модели волноводный слой 4 толщиной 50 мкм выполнен из поликарбоната с показателем преломления n1=1.5, изолирующий слой 5 толщиной 2 мкм - из полиметилметакрилата с показателем преломления n1=1.4, а информационный слой 6 толщиной 5 мкм - из полиметилметакрилата, легированного спиробензопираном, с показателем преломления n1=1.5. Данный фотохромный материал имеет две стабильные формы - спиропиран и мероцианин. Переход из первой формы во вторую осуществляется под действием ультрафиолетового излучения.

Заявляемый оптический диск 1 работает следующим образом. В режиме записи излучение на длине волны 1 направляют на фокусирующую систему 2, обеспечивая позиционирование областей фокусировки светового пучка на длине волны 1 внутри многослойного оптического диска 1. Запись, информации осуществляют путем изменения оптических свойств фотохромного материала в выбранном для записи информационном слое 6. В режиме считывания устройство считывания информации 3 направляет излучение на длине волны 2 в волноводный слой 4, прилежащий к адресуемому информационному слою 6. Волноводная мода, ограниченная изолирующими слоями 5, прилежащими с одной стороны к адресуемому информационному слою 6, а с другой - к световедущему волноводному слою 4, распространяется по указанным волноводному 4 и информационному 6 слоям и взаимодействует с пикселями, содержащими записанную информацию. Считывание данных производят путем регистрации излучения флуоресценции на длине волны 3, возбуждаемой излучением с длиной волны 2, в тех пикселях информационного слоя, которые предварительно были освещены излучением с длиной волны 1. Испущенное этими пикселями излучение флуоресценции частично попадает в апертуру фокусирующей системы 2, а затем поступает на вход приемника.

Среди известных из научной и технической литературы решений автором полезной модели не обнаружены оптические диски, содержащие прилежащие друг к другу волноводные и информационные слои с выравненными показателями преломления, что свидетельствует о соответствии полезной модели критерию новизны.

Оптический диск, включающий последовательность чередующихся слоев оптически прозрачных материалов, объединенных в группы, включающие в себя волноводный слой материала с показателем преломления n1, заключенный между изолирующим слоем материала с показателем преломления n2, удовлетворяющим соотношению n2<n1, и информационным слоем фотохромного материала с показателем преломления n3, отличающийся тем, что показатели преломления материалов волноводного и информационного слоев удовлетворяют условию |n3-n1|<0,001, толщина информационного слоя d удовлетворяет условию 1 мкм<d<10 мкм, толщина волноводного слоя D удовлетворяет условию 5 мкм<D<100 мкм, а толщина изолирующего слоя удовлетворяет условию 1 мкм<<5 мкм.



 

Наверх