Датчик определения концентрации газов

 

Полезная модель относится к области газового анализа, и позволяет повысить пороговую чувствительность при обнаружении газов в воздушных средах в широкой области концентраций. Датчик определения концентрации газов содержит диэлектрическую подложку 1, на которой 2 последовательно расположены платиновые встречно-штырьевые контакты 3 и газочувствительная пленка 4 в виде слоя на основе диоксида олова, а на противоположной стороне 5 диэлектрической подложки 1 расположен платиновый нагреватель 6. Стороны 2 и 5 диэлектрической подложки 1 выполнены шероховатыми. На расстоянии 5-10 мм от газочувствительного слоя 4 располагается источник оптического излучения 7, например светодиод. Перед началом работы датчика на нагреватель 6 подается напряжение питания, вследствие чего происходит разогрев газочувствительного слоя 4 до рабочих температур 150-190°С, в результате чего затрачивается мощность 0.2-0.3 Вт. После этого включается источник оптического излучения 7 (светодиод). Датчик помещается в исследуемую газообразную среду. Гетерогенные реакции, лежащие в основе механизма детектирования газов, являются сложным процессом, который можно условно разбить на ряд относительно простых этапов. 4 н.п.ф., 3 табл., 3 илл.

Полезная модель относится к области измерений, в частности газовому анализу и может быть использовано для создания пороговых датчиков, реагирующих на превышение допустимого содержания взрывоопасных и вредных для здоровья веществ и устройств, предназначенных для анализа состава атмосферы или газовых смесей.

Известен датчик определения концентрации газов [см. патент РФ №2096774, МПК7 G01N 27/12, опубл. 1998], содержащий подложку, пленочные нагреватели, диэлектрический слой, газочувствительный элемент и электроды для подключения к источнику напряжения, при чем газочувствительный элемент и нагреватель выполнены из одного и того же материала - SnO2, с легирующими добавками, при этом вся поверхность газочувствительного элемента представляет собой слой чередующихся микронеровностей.

Однако, в данном газовом датчике в качестве нагревательного элемента используется пленка диоксида олова, у которой при высоких температурах может происходить деградация параметров, а так же способ нанесения газочувствительной пленки, заключающийся сначала в осаждении толстой пленки, а затем ее ионном или плазмохимическом травлении до требуемых толщин, что сильно усложняет технологический процесс и негативно сказывается на газочувствительных свойствах пленок.

Наиболее близким по технической сущности является [см. патент РФ №2291416, МПК7 G01N 27/12, опубл. 2007], содержащий диэлектрическую подложку, обе поверхности которой выполнены шероховатыми, на одной из сторон подложки последовательно расположены платиновые встречно-штырьевые контакты и газочувствительный элемент в виде пленки на основе диоксида олова, легированной индием и сурьмой в равных долях, а на противоположной стороне подложки расположен платиновый нагреватель.

Однако, такой датчик имеет низкую пороговую чувствительность.

Техническим результатом полезной модели является повышение пороговой чувствительности при обнаружении газов в воздушных средах в широкой области концентраций.

Это достигается тем, что известный датчик определения концентрации газов, содержащий диэлектрическую подложку, обе стороны которой выполнены шероховатыми, на одной из сторон последовательно расположены металлические контакты из платины и газочувствительный слой в виде поликристаллической пленки двуокиси олова с легирующими добавками, а на противоположной стороне пленочный металлический нагреватель из платины, снабжен каталитическим покрытием, расположенном на газочувствительном слое, и источником оптического излучения в виде светодиода, расположенным над газочувствительным слоем на расстоянии 5-10 мм.

Кроме того, поликристаллическая пленка двуокиси олова может быть легирована сурьмой с концентрацией 0,5-1%.

Дополнительно каталитическое покрытие может быть сделано из платины и занимать 1-2% площади поверхности газочувствительного слоя.

Каталитическое покрытие может быть сделано из палладия и занимать 1-2% площади поверхности газочувствительного слоя.

Сущность полезной модели поясняется чертежами, где на фиг.1 изображены датчик определения концентрации газов, на фиг.2 показана рабочая сторона датчика определения концентрации газов, на фиг.3 приведен вид обратной стороны датчика определения концентрации газов.

Датчик определения концентрации газов содержит диэлектрическую подложку 1, на которой 2 последовательно расположены платиновые встречно-штырьевые контакты 3 и газочувствительная пленка 4 в виде слоя на основе диоксида олова, а на противоположной стороне 5 диэлектрической подложки 1 расположен платиновый нагреватель 6. Стороны 2 и 5 диэлектрической подложки 1 выполнены шероховатыми. На расстоянии 5-10 мм от газочувствительного слоя 4 располагается источник оптического излучения 7, например светодиод.

Датчик определения концентрации газов работает следующим образом.

Перед началом его работы на нагреватель 6 подается напряжение питания, вследствие чего происходит разогрев газочувствительного слоя 4 до рабочих температур 150-190°С, в результате чего затрачивается мощность 0.2-0.3 Вт.После этого включается источник оптического излучения 7 (светодиод). Датчик помещается в исследуемую газообразную среду. Гетерогенные реакции, лежащие в основе механизма детектирования газов, являются сложным процессом, который можно условно разбить на ряд относительно простых этапов. Это, адсорбция кислорода на поверхность пленки, нагретой до рабочей температуры, с образованием ионов O2 -, О-, O2-. В результате заряжения поверхности при переносе электрона из зоны проводимости на поверхностный центр кислорода возникает эффект поля, что приводит к росту электрического сопротивления датчика. При появлении в атмосфере восстанавливающих реагентов ионы кислорода на поверхности датчика вступают с ними в реакцию, идет гетерогенная реакция ионов кислорода с адсорбированными молекулами газа-восстановителя, в результате которой происходит обратный перенос электрона в зону проводимости и испарение продукта реакции с поверхности. Сопротивление датчика уменьшается. Облучение датчика светодиодом 7 вызывает небольшое уменьшение сопротивления датчика, связанное с увеличением концентрации носителей заряда в пленке в результате фотоэффекта и изменение плотности отрицательных зарядов на поверхности увеличивающих сопротивление датчика. При помощи контактов 3 происходит регистрация изменения сопротивления газочувствительного элемента.

Проведенные эксперименты показали, что облучение оптическим излучением приводит к повышению относительной чувствительности сенсоров, причем данный рост в значительной мере зависит от исходной относительной чувствительности без облучения и начинает проявляться при значениях относительной чувствительности, не превышающих приблизительно 0.5.

Относительная чувствительность датчика S определяется как отношение разности исходного сопротивления Ro и конечного сопротивления после напуска

реагента R к исходному (S=(R o-R)/Ro). Абсолютная чувствительность s датчика определяется как отношение относительной чувствительности к дозе реагента (%/(1-10)ррm).

Особенно эффективным оказывается увеличение чувствительности при минимальных значениях относительной чувствительности, приближающихся к пороговым значениям (табл.1). Усиление в разной степени наблюдается для всех без исключения исследованных реагентов, таких как этиловый, изопропиловый спирты, ацетон, бензол. Как следует из таблицы, при максимальном смещении на источнике оптического излучения относительная чувствительность газового датчика, легированного сурьмой, с палладиевым каталитическим покрытием возросла в 1.7 раз, в то же время для газового датчика, легированного индием с платиновым каталитическим покрытием эта величина около 62.

Изменение абсолютной чувствительности при облучении красным светодиодом представлено в табл.2. Оптимальная рабочая температура, соответствующая максимальной чувствительности 150-190°С. При данной температуре максимальное изменение сопротивления в атмосфере паров спирта (4.5 ppm) у датчиков с сопротивлением порядка 107 Ом, легированных сурьмой с палладиевым катализатором составило два раза, у датчиков с сопротивлением порядка 107 Ом, легированных индием с платиновым катализатором составило около 50 раз.

Зависимость изменения относительной чувствительности датчиков, помещенных в пары этилового спирта (4.5 ppm) от цвета светодиода, используемого в качестве источника оптического излучения для предварительного облучения представлена в табл. 3. Данные таблицы подтверждают положение о положительном эффекте облучения при исходных относительных чувствительностях сенсоров менее 0.5. Из рассмотрения чувствительности датчика, легированного индием с платиновым каталитическим покрытием при облучении из таблицы следует, что увеличение чувствительности в случае красного светодиода составляет 73 раза, желтого 2.6, зеленого 3 и синего 5.8.

Изготовление датчиков определения концентрации газов может быть осуществлено следующим образом.

В качестве диэлектрической подложки 1 используется кварц. На подложке предварительно создается шероховатая поверхность. На одну из сторон подложки 2 магнетронным напылением через маску наносятся встречно штыревые Pt контакты 3, на них реактивным магнетронным напылением через маску наносится газочувствительная пленка SnO2 4. Толщина пленки порядка 100 нм.

В пленку, в процессе напыления, методом составной мишени вводятся по выбору легирующие добавкой Sb с концентрацией до 1-2% ат. в. На поверхность пленок магнетронным напылением наносятся катализаторы Pt или Pd.

На обратной стороне подложки 5 так же магнетронным напылением через маску формируется пленочный Pt нагреватель 6 в виде змейки, который дополнительно выполняет функцию терморезистора.

После корректирующего отжига на воздухе при температуре 350°С в течении 1.5 часов пленки имеют сопротивление при рабочей температуре 150-190°С в пределах 103-108 Ом. Добавление в пленку диоксида олова индия или сурьмы позволяет обеспечить высокую избирательность датчика.

Экспериментально установлено, что на расстоянии 5-10 мм от газочувствительного слоя целесообразно располагать источник оптического излучения 7.

Каталитические покрытия на поверхности (Pt, Pd) повышают эффективность гетерогенных реакций.

Освещение датчика оптическим излучением светодиодов изменяет энергетический рельеф поверхности и приводит к увеличению чувствительности, особенно эффективно при малой относительной чувствительности, приближающейся к пороговой и соответствующей минимальным концентрациям определяемых реагентов.

Целесообразность и эффективность использования светодиода в качестве источника оптического излучения определяется конструктивной простотой стыковки его с датчиком.

Экспериментально установлено, что добавление в пленку диоксида олова сурьмы с концентрацией 05-1%, а так же нанесение каталитического платинового или палладиевого покрытий, занимающих 1-2% площади поверхности газочувствительного слоя 4 позволяет обеспечить высокую чувствительность датчика.

Использование полезной модели позволяет создать матричное устройство для концентрационного анализа исследуемых реагентов на базе полученных датчиков, отвечающих современным и перспективным требованиям по массогабаритным показателям, энергетическим параметрам, надежности, стабильности, сроку.

Таблица 1
 Газовый датчик определения концентрации газов Интенсивность излучения, отн.ед.
00.20.65 1
Относительная чувствительность, отн. ед.Легирующая добавка Sb Каталитическое покрытие Pd0.360.3650.415 0.625
Легирующая добавка In Каталитическое покрытие Pt 0.010.020.070.575
Таблица 2
Газовый датчик определения концентрации газов Абсолютная чувствительность без облучения, % / ррm Абсолютная чувствительность после облучения, % / ррm
Легирующая добавка Sb Каталитическое покрытие Pd7 15.5
Легирующая добавка In Каталитическое покрытие Pt 0.316.8

Таблица 3
Газовый датчик определения концентрации газов Легирующая добавка Sb Каталитическое покрытие Pd Легирующая добавка In Каталитическое покрытие Pt
Относительная чувствительность, отн.еддо облученияпосле облучениядо облученияпосле облучения
Цвет светодиода красный0.440.760.010.73
желтый0.76 0.760.110.29
зеленый0.840.840.12 0.35
синий 0.850.850.050.29

1. Датчик определения концентрации газов, содержащий диэлектрическую подложку, обе стороны которой выполнены шероховатыми, на одной из сторон последовательно расположены металлические контакты из платины и газочувствительный слой в виде поликристаллической пленки двуокиси олова с легирующими добавками, а на противоположной стороне пленочный металлический нагреватель из платины, отличающийся тем, что он снабжен каталитическим покрытием, расположенным на газочувствительном слое, и источником оптического излучения в виде светодиода, расположенным над газочувствительным слоем на расстоянии 5-10 мм.

2. Датчик определения концентрации газов по п.1, отличающийся тем, что поликристаллическая пленка двуокиси олова легирована сурьмой с концентрацией 0,5-1%.

3. Датчик по п.1, отличающийся тем, что каталитическое покрытие сделано из платины и занимает 1-2% площади поверхности газочувствительного слоя.

4. Датчик по п.1, отличающийся тем, что каталитическое покрытие сделано из палладия и занимает 1-2% площади поверхности газочувствительного слоя.



 

Похожие патенты:

Изобретение относится к области фотокаталитической очистки газов, в т.ч
Наверх