Плазмохимический реактор

 

Полезная модель относится к аппаратам химической технологии и может быть использована в производстве диоксида. Плазмохимческий реактор для получения диоксида титана по хлоридной технологии содержит осесимметричный корпус с водоохлаждаемыми стенками и выходным отверстием в нижней части, генератор плазмы, размещенный в верхней части корпуса, и одну центральную форсунку и/или несколько форсунок для ввода реагентов, которые установлены в средней зоне корпуса, сопла которых направлены в сторону выходного отверстия, причем на стенке корпуса выполнено кольцевое сопло в виде направленного соосно к выходному отверстию пристенного кольцевого канала, образованного кольцевым буртиком корпуса и внутренней стенкой кольцевого коллектора для ввода защитного газа, снабженной равномерно расположенными тангенциальными отверстиями, при этом плоскость выходного сечения кольцевого сопла размещена между уровнем выходных сечений сопел форсунок и плоскостью, проходящей от них на расстоянии Н=1/2(D 1-D2)ctg(/2), где Н - расстояние между плоскостью выходного сечения кольцевого сопла и уровнем расположения выходных отверстий форсунок; D1 - диаметр корпуса; D 2 - диаметр окружности, по которой установлены форсунки; - угол факела распыла форсунок.

Полезная модель относится к аппаратам химической технологии и может быть использована в производстве диоксида титана.

Из уровня техники известен плазмохимический реактор для получения диоксида титана по хлоридной технологии, содержащий осесимметричный корпус с водоохлаждаемыми стенками и выходным отверстием в нижней части, генератор плазмы, размещенный в верхней части корпуса, и форсунки для ввода реагентов, установленные в средней части корпуса, сопла которых направлены в сторону выходного отверстия, (RU 2052908 C1, H 05 H 1/42, 1996; WO 97/19895 A1, H 05 H 1/42, 1997). Основным недостатком известного устройства является возможность образования в процессе получения диоксида титана на стенке реактора ниже форсунок твердых наростов, которые приводят к нарушению течения процесса, к ухудшению качества получаемого продукта и к снижению надежности работы реактора.

Полезная модель направлена на повышение надежности и улучшение эксплуатационных характеристик плазмохимического реактора путем исключения образования наростов на стенке реактора в зоне факела распыливания форсунками исходных реагентов.

Решение поставленной задачи обеспечивается тем, что в. плазмохимическом реакторе, содержащем осесимметричный корпус с водоохлаждаемыми стенками и выходным отверстием в нижней части, генератор плазмы, размещенный в верхней части корпуса, и одну центральную форсунку и/или несколько форсунок для ввода реагентов, установленные в средней зоне корпуса, сопла которых направлены в

сторону выходного отверстия, согласно полезной модели, на стенке корпуса выполнено кольцевое сопло в виде направленного соосно к выходному отверстию пристенного кольцевого канала, образованного кольцевым буртиком корпуса и внутренней стенкой кольцевого коллектора для ввода защитного газа, снабженной равномерно расположенными тангенциальными отверстиями, при этом плоскость выходного сечения кольцевого сопла размещена между уровнем выходных сечений сопел форсунок и плоскостью, проходящей от них на расстоянии

Н=1/2(D1-D2)ctg(/2),

где Н - расстояние между плоскостью выходного сечения кольцевого сопла и уровнем расположения выходных отверстий форсунок;

D1 - диаметр корпуса;

D2 - диаметр окружности, по которой установлены форсунки;

- угол факела распыла форсунок.

В реакторе малой мощности предпочтительно размещение одной центральной форсунки соосно в средней зоне корпуса.

Причем генератор плазмы может быть выполнен с катодным и анодным узлами, которые установлены под углом друг к другу и снабжены патрубками подачи кислорода.

Наличие кольцевого сопла с кольцевым коллектором, размещенного ниже уровня выходных сечений сопел форсунок на расстоянии, обеспечивает формирование тонкого слоя газовой завесы в виде вихревое течение защитного газа у стенки реактора, который предотвращает контактирование непрореагировавших капель или частиц исходных реагентов со стенкой и образование наростов, но малая толщина которого исключает отрицательное влияние на протекание процессов в полости реактора.

На фиг.1 изображен продольный разрез плазмохимического реактора; на фиг.2 - поперечный разрез А-А на фиг.1; на фиг.3 - вид В на фиг.1

Плазмохимический реактор содержит корпус, составленный из водоохлаждаемых верхней 1 части, в которой установлены катодный и анодный узлы 2 и 3 двухструйного генератора плазмы (плазмотрона), и нижней части 4 с выходным отверстием 5, и размещенные в средней зоне корпуса форсунки 6 для ввода реагентов с патрубками 7 для подачи в жидкого тетрахлорида титана, сопла которых ориентированы в сторону выходного отверстия 5. Между верхней и нижней частями 1 и 4 корпуса установлен кольцевой коллектор 8 для ввода защитного газа, а верхняя часть 1 корпуса внизу снабжена буртиком 9, образующим с внутренней стенкой 10 кольцевого коллектора 8, которая выполнена с равномерно расположенными тангенциальными отверстиями 11, кольцевое сопло 12 в виде направленного соосно к выходному отверстию 5 пристенного кольцевого канала. При этом плоскость выходного сечения кольцевого сопла 12 размещена между уровнем выходных сечений сопел форсунок 6, равномерно установленных по окружности, и плоскостью, проходящей от них на расстоянии

Н=1/2(D 1-D2)ctg(/2),

где Н - расстояние между плоскостью выходного сечения кольцевого сопла и уровнем расположения выходных отверстий форсунок;

D1 - диаметр корпуса;

D2 - диаметр окружности, по которой установлены форсунки;

- угол факела распыла форсунок.

Плазмохимический реактор для получения диоксида титана по хлоридной технологии работает следующим образом.

В катодный 2 и анодный 3 узлы генератора плазмы - плазмотрона подают кислород, который в дуге плазмотрона нагревается до плазменного состояния. Из плазмотрона струи кислородной плазмы поступают во внутреннюю полость верхней части 1 корпуса реактора, где формируется

поток кислородной плазмы, который заполняет всю площадь поперечного и, обтекая форсунки 6, направляется к выходному отверстию 5. В форсунки 6 через патрубки 7 подают под давлением жидкий тетрахлорид титана (TiCl4) с взвешенными в нем частицами алюминиевого порошка, а в кольцевой коллектор 8 по патрубку 13 подают защитный газ - кислород. Форсунки 6 распыливают тетрахлорид титана, факел распыливания смешивается с плазмой кислорода, образуя реагирующий поток, в котором происходит испарение терахлорида титана и окисление паров до диоксида титана. При этом основная масса содержащихся в каплях частиц порошка алюминия после испарения тетрахлорида титана окисляются до Al2O 3, но наиболее крупные частицы порошка алюминия и крупные капли тетрахлорида титана, которые не успевают испариться, не попадают на стенку корпуса реактора из-за наличия у стенки в зоне факела распыливания форсунок 6 тонкой вихревой газовой завесы, образованной истекающим из кольцевого сопла 12 потоком защитного газа, причем тангенциальные отверстия 11 кольцевого коллектора 8 направляют по касательной к стенке корпуса реактора струи кислорода, а буртик 9 препятствует распространению струй кислорода в радиальном направлении вглубь полости реактора.

Таким образом, исключается контактирование непрореагировавших капель или частиц исходных реагентов со стенкой корпуса реактора и образование наростов, что повышает устойчивость и надежность работы реактора и способствует улучшению эксплуатационных характеристик и качества получаемого продукта.

1. Плазмохимческий реактор для получения диоксида титана по хлоридной технологии, содержащий осесимметричный корпус с водоохлаждаемыми стенками и выходным отверстием в нижней части, генератор плазмы, размещенный в верхней части корпуса, и одну центральную форсунку и/или несколько форсунок для ввода реагентов, которые установлены в средней зоне корпуса, сопла которых направлены в сторону выходного отверстия, отличающийся тем, что на стенке корпуса выполнено кольцевое сопло в виде направленного соосно к выходному отверстию пристенного кольцевого канала, образованного кольцевым буртиком корпуса и внутренней стенкой кольцевого коллектора для ввода защитного газа, снабженной равномерно расположенными тангенциальными отверстиями, при этом плоскость выходного сечения кольцевого сопла размещена между уровнем выходных сечений сопел форсунок и плоскостью, проходящей от них на расстоянии

Н=1/2(D 1-D2)ctg(/2),

где Н - расстояние между плоскостью выходного сечения кольцевого сопла и уровнем расположения выходных отверстий форсунок;

D1 - диаметр корпуса;

D2 - диаметр окружности, по которой установлены форсунки;

- угол факела распыла форсунок.

2. Плазмохимческий реактор по п.1, отличающийся тем, что генератор плазмы выполнен с катодным и анодным узлами, которые установлены под углом друг к другу и снабжены патрубками подачи кислорода.



 

Наверх