Металло-воздушный химический источник тока

 

Полезная модель относится к области электротехники и может быть использовано при производстве металло-воздушных химических источников тока (МВХИТ). Согласно полезной модели МВХИТ содержит корпус карманного типа с воздушными газодиффузионными катодами, расположенными на противоположных стенках корпуса, металлический анод и раствор электролита, размещенные в корпусе, при этом, каждый из газодиффузионных катодов представляет собой, по меньшей мере, два прямоугольника равной площади, разделенные, по меньшей мере, одной вертикальной перегородкой, выполненной из материала корпуса заподлицо со стенкой корпуса и имеющей ширину от 4 до 10 мм. Площадь газодиффузионных катодов может определяться по формуле S=I·Sуд, где: S - площадь катода (см2), I - номинальный ток нагрузки (А), Sуд - удельная оптимальная площадь газодиффузионного катода, найденная экспериментально, равная 20-80 см2/А, а внутренний объем корпуса может определяться по формуле V=Q·Vуд , где: V - внутренний объем корпуса (см3 ), Q - энергоемкость (А·ч), Vуд - удельный оптимальный объем корпуса,, найденная экспериментально, равен 3-8 см3/А·ч. зазор между катодами может составлять 5-10 мм, а расстояние между анодом и катодом составляет 2-4 мм. Расстояние от верхней кромки катодов до верхней кромки корпуса может составлять 30-50 мм, а расстояние от нижней кромки катодов до дна корпуса может составлять 4-10 мм.

Полезная модель относится к области электротехники и может быть использована при производстве металло-воздушных химических источников тока (МВХИТ) различного назначения.

Известен МВХИТ, содержащий корпус карманного типа с газодиффузионными катодами, расположенными на противоположных стенках корпуса, металлический анод и жидкий электролит, размещенные внутри корпуса (пат. США №5024904, кл. Н 01 М 12/001991).

Недостатком известного МВХИТ является не оптимальность размеров составляющих МВХИТ.

Из известных МВХИТ наиболее близким по совокупности существенных признаков и достигаемому результату является МВХИТ, содержащий корпус карманного типа с газодиффузионными катодами, расположенными на противоположных стенках кармана, жидкий электролит и металлический анод, расположенные в кармане, при этом анод расположен в корпусе с зазором относительно катодов (см. пат. РФ №2080697, кл. Н 01 М 12/06, 1997).

Недостатком указанного МВХИТ является не оптимальность размеров составляющих МВХИТ и сложность изготовления МВХИТ большого размера, из-за возможности коробления катодов.

Задачей полезной модели является создание конструкции, позволяющей изготавливать в соответствие с потребностью МВХИТ любого размера, обладающей оптимальными размерами составляющих, а также обеспечивающей требуемый ресурс и удобство эксплуатации.

Указанный технический результат достигается тем, что МВХИТ содержит корпус карманного типа с воздушными газодиффузионными катодами, расположенными на противоположных стенках корпуса,

металлический анод и раствор электролита, размещенные в корпусе, при этом, каждый из газодиффузионных катодов представляет собой, по меньшей мере, два прямоугольника равной площади, разделенные, по меньшей мере, одной вертикальной перемычкой, выполненной из материала корпуса заподлицо со стенкой корпуса и имеющей ширину от 4 до 10 мм.

Выполнение МВХИТ в соответствии с указанными признаками позволяет предотвратить коробление катодов за счет введения вертикальных перемычек, а также, при необходимости, при изготовлении МВХИТ большого размера, использовать катоды меньшего размера. Размеры ширины перемычки, составляющие от 4 до 10 мм, позволяют надежно зафиксировать катод в корпусе МВХИТ и предотвратить его коробление.

Целесообразно, чтобы площадь газодиффузионных катодов определялась по формуле S=I·S уд, где: S - площадь катода (см2), I - номинальный ток нагрузки (А), Sуд - удельная оптимальная площадь газодиффузионного катода, найденная экспериментально, равная 20-80 см2/А. Указанная эмпирическая формула позволяет выбрать оптимальную площадь катода МВХИТ.

Целесообразно, чтобы внутренний объем корпуса определялся по формуле V=Q·Vуд, где: V - внутренний объем корпуса (см3), Q - энергоемкость (А·ч), Vуд - удельный оптимальный объем корпуса, найденная экспериментально, равен 3-8 см 3/А·ч. Указанная эмпирическая формула для определения внутреннего объема МВХИТ позволяет определить оптимальный объем электролита для требуемой энергоемкости элемента.

Целесообразно, чтобы зазор между катодами составляет 5-10 мм, а расстояние между анодом и катодом составляет 2-4 мм. Указанные размеры являются оптимальными. При размерах меньше 2 мм в зазоре между анодом и катодом будут скапливаться продукты реакции, что отрицательно сказывается на разрядных характеристиках МВХИТ. При зазоре между катодами менее 5 мм толщина анода будет малой, что ограничивает энергоемкость МВХИТ. При зазоре между катодами более 10 мм и

расстоянии между анодом и катодом более 4 мм неоправданно растут габариты и масса МВХИТ, что нецелесообразно.

Целесообразно, чтобы расстояние от верхней кромки катодов до верхней кромки корпуса составляло 30-50 мм, а расстояние от нижней кромки катода до дна корпуса составляло 4-10 мм. При расстоянии до верхней кромки корпуса МВХИТ менее 30 мм происходит вынос электролита с пузырьками выделяющегося газа за пределы корпуса вне зависимости от размеров и емкости МВХИТ. Увеличение указанного расстояния более 50 мм нецелесообразно, поскольку это приводит к увеличению массогабаритных характеристик МВХИТ без увеличения ее энергетических характеристик. Расстояние между нижней кромкой катодов и дном корпуса выбирается исходя из объема накапливающегося шлама во время разряда.

Проведенный анализ уровня техники показал, что заявленная совокупность существенных признаков, изложенная в формуле изобретения, неизвестна. Это позволяет сделать вывод о ее соответствии критерию "новизна".

Сущность полезной модели поясняется чертежами и описанием работы заявленного МВХИТ.

На фиг.1а показан фронтальный вид заявленного МВХИТ.

На фиг.1б показан разрез по АА заявленного МВХИТ.

МВХИТ содержит корпус 1 карманного типа, два прямоугольных газодиффузионных катода 2 равной площади, вертикальную перемычку 3, металлический анод 4 и электролит 5 внутри корпуса. Верхняя кромка катодов расположена на расстоянии H1 от верхней кромки корпуса, нижняя кромка катодов расположена на расстоянии Н2 от дна корпуса Расстояние между катодами L, расстояние между анодом и катодом . МВХИТ работает следующим образом. При подключении внешней нагрузки к электродам МВХИТ происходит генерация постоянного тока за счет протекания электрохимических реакций окисления анода и восстановления кислорода воздуха, поступающего через поры катода. Генерируемый ток потребляется нагрузкой, а продукты реакции оседают на дно элемента. Выделяющийся при

работе МВХИТ водород поднимается по зазору между анодом 4 и катодами 2 и выходит наружу. Расстояние H1 от верхней кромки корпуса предотвращает вынос капельной фазы электролита, расстоянии Н 2 от дна корпуса МВХИТ определяет длительность работы связанной с накоплением продуктов реакции и закорачиванием электродов.

На основании вышеизложенного можно сделать вывод, что заявленная МВБ может быть реализована на практике с достижением заявленного технического результата, т.е. она соответствует критерию «промышленная применимость».

1. Металловоздушный химический источник тока (МВХИТ), содержащий корпус карманного типа с воздушными газодиффузионными катодами, расположенными на противоположных стенках корпуса, металлический анод и раствор электролита, размещенные в корпусе, отличающийся тем, что каждый из газодиффузионных катодов представляет собой по меньшей мере два прямоугольника равной площади, разделенные по меньшей мере одной вертикальной перемычкой, выполненной из материала корпуса заподлицо со стенкой корпуса и имеющей ширину от 4 до 10 мм.

2. Металловоздушный химический источник тока по п.1, отличающийся тем, что площадь газодиффузионных катодов определяется по формуле S=I·Sуд, где S - площадь катода, см2, I - номинальный ток нагрузки, А, Sуд - удельная оптимальная площадь газодиффузионного катода, найденная экспериментально, равная 20-80 см2/А.

3. Металловоздушный химический источник тока по п.1, отличающийся тем, что внутренний объем корпуса определяется по формуле V=Q·V уд, где V - внутренний объем корпуса, см 3, Q - энергоемкость, А·ч, Vуд - удельный оптимальный объем корпуса, найденный экспериментально, равен 3-8 см3/А·ч.

4. Металловоздушный химический источник тока по п.1, отличающийся тем, что зазор между катодами составляет 5-10 мм, а расстояние между анодом и катодом составляет 2-4 мм.

5. Металловоздушный химический источник тока по п.1, отличающийся тем, что расстояние от верхней кромки катодов до верхней кромки корпуса составляет 30-50 мм, расстояние от нижней кромки катодов до дна корпуса составляет 4-10 мм.



 

Похожие патенты:

Изобретение относится к топливным элементам - устройствам, преобразующим химическую энергию в электрическую

Полезная модель относится к области электротехники, а именно к области преобразовательной техники, более конкретно к источникам, преобразующим энергию постоянного тока в энергию требуемого вида
Наверх