Подшипник системы энергонезависимого активного магнитного подвеса ротора

 

1. Подшипник системы активного магнитного подвеса, содержащий размещенный в корпусе статор радиальной опоры и установленный на валу соответствующий ему ротор с зубцами на цилиндрической поверхности, обращенной к рабочей поверхности статора радиальной опоры, на поверхностях боковых полюсов которого расположены зубцы, обращенные к ротору и смещенные относительно друг друга на половину шага зубца, на среднем полюсе статора радиальной опоры расположена обмотка возбуждения, а на его боковых полюсах - генераторные обмотки, соединенные последовательно-встречно и подключенные свободными выводами ко входам выпрямителя напряжения, отличающийся тем, что снабжен страховочным шарикоподшипником, внешней обоймой контактирующим с корпусом через упругие элементы, датчиком положения ротора, статор которого связан с корпусом, модулем управления, соединенным посредством информационного канала с системой автоматического управления машины, ротор датчика положения ротора и внутренняя обойма страховочного шарикоподшипника дополнительно установлены на валу, средний полюс статора радиальной опоры выполнен беззубцовым с дополнительным размещением на нем обмотки управления, при этом магнитная цепь статора радиальной опоры выполнена в виде систем полюсов, образующих зоны притяжения с осями, расположенными под углами 120° в радиальных направлениях сечения опоры, основная система полюсов, имеющая зону притяжения в вертикальном направлении, образована средним и боковыми полюсами, а полюса, образующие другие системы с зонами притяжения в других направлениях, выполнены беззубцовыми с размещением на них обмоток управления, при этом первые выводы обмотки возбуждения и обмоток управления радиальной опоры соединены между собой, вторые выводы обмоток управления радиальной опоры подключены соответственно к первому трехфазному управляющему выходу модуля управления, третьи управляющие выходы которого связаны с первым и вторым выводами обмотки возбуждения, а выходы датчика положения ротора опор связаны с первым трехфазным информационным входом модуля управления.

2. Подшипник по п.1, отличающийся тем, что модуль управления содержит формирователь вектора радиального перемещения ротора, соединенный выходом через блок динамической обработки сигнала радиального отклонения со входом формирователя управляющих токов в обмотках управления радиальной опоры, который выходами подключен ко входам соответствующих усилителей мощности канала стабилизации радиального положения ротора, выходы которых являются первыми управляющими выходами модуля управления, блок контроля процесса управления, выполненный с возможностью передачи управляющей информации в систему автоматического управления машины, выпрямитель напряжения выходами соединен через емкостной фильтр со входами регулятора напряжения и источника вторичного электропитания, выполненного с возможностью подключения к выводам электропитания всех блоков модуля управления, причем один из выходов емкостного фильтра и выход регулятора напряжения являются третьими управляющими выходами модуля управления, при этом входы формирователя вектора радиального перемещения ротора являются первыми информационными входами модуля управления, а формирователь управляющих токов в обмотках управления радиальной опоры выполнен с возможностью реализации векторной стабилизации ротора по осям в радиальных направлениях.

3. Подшипник по п.1, отличающийся тем, что он снабжен расположенными в корпусе статором и ротором осевой опоры, ротор осевой опоры установлен на валу, датчик положения ротора представляет собой датчик радиального и осевого положения роторов соответственно радиальной и осевой опор, на статоре осевой опоры размещены обмотки управления, первые выводы которых соединены с первыми выводами обмоток возбуждения и обмоток управления радиальной опоры, а вторые выводы подключены ко второму управляющему выходу модуля управления.

4. Подшипник по п.3, отличающийся тем, что модуль управления дополнительно содержит блок динамической обработки сигнала осевой опоры, подключенный выходами к входам соответствующих усилителей мощности канала стабилизации осевого положения ротора, выходы которых являются вторыми управляющими выходами модуля управления, а вторым информационным входом модуля управления является вход блока динамической обработки сигнала осевой опоры.

5. Подшипник по п.2 или 4, отличающийся тем, что модуль управления дополнительно снабжен блоком контроля частоты вращения ротора, вход которого является третьим информационным входом модуля управления.

6. Подшипник по любому из пп.2-5, отличающийся тем, что выпрямитель напряжения и регулятор напряжения выполнены с возможностью образования вместе с генераторными обмотками электрогенератора с самовозбуждением.

7. Подшипник по любому из пп.3-6, отличающийся тем, что магнитная система статора радиальной опоры выполнена в виде, по меньшей мере, четырех систем полюсов, образующих одну основную зону притяжения в вертикальном направлении и, по меньшей мере, три дополнительные зоны притяжения, причем формирователь управляющих токов в обмотках управления радиальной опоры выполнен с возможностью реализации векторной стабилизации ротора в соответствии с количеством зон притяжения.

8. Подшипник по любому из пп.3-7, отличающийся тем, что осевая опора выполнена с использованием, по меньшей мере, одного электромагнита.

9. Подшипник по любому из пп.2-8, отличающийся тем, что информационный канал между модулем управления и системой автоматического управления машины выполнен бесконтактным, например оптическим.



 

Похожие патенты:

Настоящий магнитный подшипник относится к отрасли машиностроения и может быть использована в качестве опор маховиков и валов. Предложен магнитный подшипник, который состоит из тела вращения, корпуса, подвижных магнитов, связанных с осью тела вращения и неподвижных магнитов, связанных с корпусом, что чередуются друг с другом с зазорами, причем магниты выполнены кольцеобразными с полюсами, обращенными в противоположные стороны, и имеют в сечении форму трапеции

Использование: Полезная модель относится к области энергомашиностроения и может быть использована в качестве электрической машины с компенсацией сил одностороннего магнитного притяжения. Технический результат: минимизация влияния сил одностороннего магнитного притяжения на работу электрической машины.
Наверх