Ультразвуковой проточный реактор для кавитационной обработки высоковязких жидкостей
Ультразвуковой проточный реактор для кавитационной обработки высоковязких жидкостей предназначен для интенсификации процессов химических технологий в жидких и жидкодисперсных средах, характеризующихся высокой вязкостью.
Ультразвуковой проточный реактор для обработки высоковязких жидких сред состоит из технологической камеры с устройствами ввода-вывода и источника ультразвукового воздействия. Технологическая камера выполнена в виде нескольких полых цилиндров, размещенных параллельно и соединенных между собой каналами прямоугольного сечения.
Источник ультразвукового воздействия состоит из пьезоэлектрических преобразователей, промежуточных устройств с фланцевым узлом герметичного присоединения к торцу каждого полого цилиндра технологической камеры и излучателей, выполненных в виде стержней ступенчато-переменного диаметра и размещенных соосно в полых цилиндрах. На внутренней поверхности цилиндров технологической камеры, напротив переходов от максимального до минимального диаметра излучателей, установлены пластинчатые отражатели в виде усеченных конусов, направленных вершинами друг к другу.
1 п.ф.
Предлагаемое техническое решение - полезная модель относится к устройствам, предназначенным для интенсификации процессов химических технологий в жидких и жидкодисперсных средах с помощью ультразвуковых (УЗ) колебаний высокой интенсивности.
В связи с необходимостью увеличения скорости протекания ряда физико-химических процессов, получения однородных наполненных структур, повышения прочности получаемых композиционных материалов (после отверждения связующего) возникает потребность в разработке устройств, позволяющих эффективно перемешивать, диспергировать твердые частицы или капли эмульсии в несущей жидкой высоковязкой среде до микронных (110 мкм) или субмикронных размеров.
Для диспергирования частиц в жидкой высоковязкой технологической среде и их равномерного распределения по объему среды используются устройства, представляющие собой механические мешалки [1, 2], гидравлические аппараты [3, 4] и др. Все они характеризуются низкой производительностью, высокой энергоемкостью и невозможностью диспергирования частиц до размеров менее 100 мкм, а также неспособностью равномерного распределения частиц в жидкой высоковязкой среде.
Неэффективность известных устройств обусловлена физическими принципами воздействия за счет механического перемешивающего воздействия и обуславливает необходимость реализации УЗ воздействия.
Известны проточные реакторы [5-7] для кавитационной обработки высоковязких жидкостей, предназначенные для интенсификации физико-химических процессов в жидких и жидкодисперсных средах с помощью ультразвуковых колебаний высокой интенсивности, включающие генератор электрических колебаний ультразвуковой частоты (1840 кГц) и источник ультразвукового воздействия в виде колебательной системы, осуществляющей преобразование электрических колебаний в механические ультразвуковые. Формируемые ультразвуковые колебания через рабочий инструмент вводятся в обрабатываемые технологические среды. Вблизи излучающей поверхности рабочего инструмента источника ультразвукового воздействия создается кавитационная зона, в которой обеспечивается эффективное перемешивание и диспергирование гетерогенных неоднородностей.
Поскольку кавитирующая среда характеризуется большим коэффициентом поглощения (более 20 дБ/м), на малом расстоянии (менее 5 см) от излучающей поверхности рабочего инструмента интенсивность УЗ колебаний падает до порогового значения и кавитация прекращается.
Так как зона эффективного УЗ воздействия вблизи излучающей поверхности имеет ограниченный размер, применяются источники ультразвукового воздействия с увеличенной поверхностью излучения рабочего инструмента. На основе использования такого источника УЗ воздействия реализован ультразвуковой проточный реактор для обработки высоковязких жидкостей [8], наиболее близкий по технической сущности к предлагаемому техническому решению и принятый за прототип.
Ультразвуковой проточный реактор для кавитационной обработки высоковязких жидкостей, принятый за прототип, состоит из технологической камеры с устройствами ввода-вывода и источника ультразвукового воздействия.
В принятом за прототип проточном реакторе рабочий инструмент источника УЗ воздействия размещен внутри цилиндрического технологического объема, через который реализуется проток обрабатываемой жидкости. Технологический объем прототипа содержит внутренние отражающие выступы на его стенках, которые могут иметь трапецеидальный, параболический или овальный профиль. Они обеспечивают усиление колебаний в формируемой стоячей волне.
Основное достоинство прототипа заключается в том, что излучение происходит радиально от рабочего инструмента в виде стержня и поэтому зоны кавитационного воздействия (эффективной обработки вязких жидкостей) распределены по всему объему практически равномерно (доля объема, занимаемого зоной развитой кавитации, составляет 4050%).
Вместе с тем, анализ функциональных возможностей прототипа позволил выявить следующие существенные недостатки:
1. Недостаточный для реализации процессов в промышленных масштабах объем обрабатываемой жидкости из-за малых размеров (длина менее 5 см) кавитационных зон.
2. Большая металлоемкость конструкции из-за конструктивных особенностей и сплошности отражателей, которые занимают до 50% от объема обрабатываемой среды, единовременно находящейся в аппарате.
3. Высокое гидравлическое сопротивление (более 2 кПа) при протекании жидкостей с вязкостью свыше 400 мПа-с через реактор, обусловленное тем, что отражатели перекрывают сечение потока.
Все перечисленные недостатки обуславливают низкую производительность УЗ обработки высоковязких сред (не более 10 л/час).
Предлагаемое техническое решение направлено на устранение недостатков прототипа, а именно, на создание устройства, обеспечивающего увеличение доли объема зоны развитой кавитации без уменьшения полного объема обрабатываемой жидкости с одновременным снижением гидравлического сопротивления при ее протоке.
Сущность предлагаемого технического решения заключается в том, что в известном ультразвуковом проточном реакторе для кавитационной обработки высоковязких жидкостей, состоящем из технологической камеры с устройствами ввода-вывода и источника ультразвукового воздействия, технологическая камера выполнена из нескольких полых цилиндров, имеющих продольные пазы в диаметрально противоположных стенках, полые цилиндры размещены параллельно и соединены между собой каналами прямоугольного сечения, ширина которых соответствует длине полых цилиндров, высота не превосходит половины разницы между внутренним диаметром цилиндрической камеры и внешним диаметром излучателя источника ультразвукового воздействия. Устройства ввода-вывода выполнены в виде каналов прямоугольного сечения с поперечными размерами, соответствующими размерам каналов, соединяющих между собой полые цилиндры. Источник ультразвукового воздействия выполнен в виде последовательно размещенных и акустически связанных между собой пьезоэлектрических преобразователей, количество которых соответствует количеству полых цилиндров технологической камеры, промежуточных устройств, каждое из которых имеет фланцевый узел герметичного присоединения к торцу полого цилиндра технологической камеры, и размещенных соосно внутри каждого полого цилиндра излучателей, выполненных в виде стержня ступенчато-переменного диаметра с переходами между участками разного диаметра. Причем максимальный диаметр стержня меньше внутреннего диаметра полого цилиндра, расстояние между переходами от максимального до минимального диаметра излучателя соответствует половине длины волны ультразвуковых колебаний в материале излучателя. На внутренней поверхности цилиндрических объемов технологической камеры, напротив переходов от максимального до минимального диаметра излучателей, установлены пластинчатые отражатели, имеющие форму усеченных конусов, направленных вершинами друг к другу и содержащие перфорации размером менее четверти длины волны УЗ колебаний в среде.
Сущность технического решения поясняются фиг. 1 и фиг. 2. На фиг. 1 схематично показана конструкция предлагаемого устройства, на фиг. 2. представлена схема распространения колебаний в объеме обрабатываемой жидкости, поясняющая влияние отражателей.
Представленный на фиг. 1 ультразвуковой проточный реактор для кавитационной обработки высоковязких жидкостей состоит из технологической камеры 1 с устройствами ввода-вывода 2 и 3. Технологическая камера 1 выполнена из полых цилиндров 4, имеющих продольные пазы 5 в диаметрально противоположных стенках. Полые цилиндры размещены параллельно и соединены между собой каналами 6 прямоугольного сечения, ширина которых соответствует длине полых цилиндров, высота не превосходит половины разницы между внутренним диаметром цилиндрической камеры и внешним диаметром излучателя 7 источника ультразвукового воздействия 8. Устройства ввода-вывода 2 и 3 выполнены в виде каналов прямоугольного сечения с поперечными размерами, соответствующими размерам каналов 6, соединяющих между собой полые цилиндры 4 технологической камеры 1.
Источник ультразвукового воздействия выполнен в виде последовательно размещенных и акустически связанных между собой пьезоэлектрических преобразователей 9, количество которых соответствует количеству полых цилиндров технологической камеры, промежуточных устройств 10, каждое из которых имеет фланцевый узел 11 герметичного присоединения к торцу полого цилиндра технологической камеры, и размещенных соосно внутри каждого полого цилиндра излучателей 7, выполненных в виде стержня ступенчато-переменного диаметра с радиальными переходами между участками разного диаметра. Плавные переходы позволяют создать необходимую площадь излучающей поверхности и снизить концентрацию механических напряжений в узлах переходов, чтобы предотвратить разрушение материала излучателя в ходе ультразвукового воздействия.
Максимальный диаметр стержня выбран меньше внутреннего диаметра полого цилиндра. Расстояние между переходами от максимального до минимального диаметра излучателя соответствует половине длины волны ультразвуковых колебаний в материале излучателя. Выбор такого расстояния между переходами необходим для обеспечения высокой амплитуды колебаний поверхности излучателей 7 (более 20 мкм) за счет резонансных явлений в материале рабочего инструмента излучателя.
На внутренней поверхности цилиндрических объемов технологической камеры, напротив переходов от максимального до минимального диаметра излучателей, установлены пластинчатые отражатели 12, имеющие форму усеченных конусов, попарно направленных вершинами друг к другу. Угол образующей отражателей составляет 1/4 от угла образующей радиальных переходов. Такое значение угла образующей отражателей обеспечивает формирование продольных стоячих волн вблизи стенки полого цилиндра 4, что поясняется фиг.2.
В отражателях 12 выполнены перфорации 13, имеющие размер, не превышающий четверти длины волны УЗ колебаний в среде. Наличие перфораций в отражателях снижает гидравлическое сопротивление потоку жидкости и обеспечивает дополнительное перемешивание жидкости в полостях цилиндров 4 для увеличения однородности УЗ обработки.
Поскольку ширина прямоугольного сечения устройств ввода-вывода 2 и 3 и каналов 4, соединяющих полые цилиндры между собой, соответствует длине полых цилиндров, то гидравлическое сопротивление в предлагаемом устройстве не превышает 200 Па, что более чем в 10 раз ниже, чем в прототипе. При этом, пластинчатые отражатели практически не оказывают влияния на гидравлическое сопротивление, поскольку устройства ввода-вывода 2, 3 и каналы 6 сопряжены с пазами 5 в боковых стенках.
Ультразвуковой проточный реактор для кавитационной обработки высоковязких жидкостей работает следующим образом.
Необработанная жидкая технологическая среда (сырье) подводится через устройство ввода 2. Устройство ввода 2 и каналы 6, соединяющие между собой полые цилиндры 4, формируют поступательное движение среды в технологической камере 1 вдоль линий тока 14. Двигаясь вдоль линий тока, частицы жидкой среды последовательно проходят через каждый полый цилиндр 4 в составе технологической камеры 1, подвергаясь УЗ воздействию, и достигают устройства вывода 3. Устройство вывода обеспечивает забор обработанной жидкости из проточного реактора, например, с помощью поршневого насоса.
Схема распространения колебаний поясняется фиг. 2.
УЗ колебания, создаваемые поверхностями переходов излучателя 7, распространяются внутри цилиндрического объема 4 в обрабатываемой среде, достигают поверхностей пластинчатых отражателей 12, имеющих форму усеченных конусов, попарно направленных вершинами друг к другу, и отражаются от них, изменяя направление распространения. Угол образующей отражателей , обозначенный на фиг. 2, составляет 1/4 от угла образующей переходов . Такое значение угла образующей отражателей обеспечивает формирование продольных стоячих волн вблизи стенки полого цилиндра 4 и формирование зон эффективной кавитационной обработки жидкости.
За счет сложения ультразвуковых колебаний в стоячих волнах их интенсивность вблизи стенки полого цилиндра достигает не менее 80% от интенсивности колебаний вблизи излучателя.
Проведенные расчеты и экспериментальные исследования позволили установить, что наличие пластинчатых отражателей, обеспечивающих формирование стоячих волн, приводит к увеличению объема зоны развитой кавитации более чем в 2,5 раза в сравнении с прототипом.
Для определения эффективности созданного устройства и установления его функциональных возможностей были проведены экспериментальные исследования по ультразвуковому диспергированию суспензий волластонита в эпоксидной смоле ЭД-20. В результате сравнительных испытаний с прототипом было установлено уменьшение среднего размера получаемых частиц с 58 до 42 мкм.
Достигнутый при использовании предложенного технического решения меньший диаметр дисперсных частиц в среде позволил увеличить на 36% прочность композиционного материала, получаемого при использовании обработанной жидкодисперсной среды в качестве связующего.
Предложенное устройство было разработано и испытано в производственных условиях предприятия ООО «Центр ультразвуковых технологий АлтГТУ» и готовится для промышленного применения.
Список литературы, использованной при составлении заявки
1. Реактор с мешалкой и способ осуществления полимеризации с использованием такого реактора [Текст]: пат.2492921 РФ МПК B01J 4/00 / Карлофф Р., Хайд Й., Пиккенэккер О. (DE), патентообладатель: Эвоник Рем Гмбх (DE), заявка 2010139556/05 от 28.11.2008, опубл. 20.09.2013.
2. Мешалка для емкостей с малой горловиной [Текст]: пат.2524602 РФ МПК B01F 7/18, B01F 7/24 / Сидоров В.Н., Ширина Н.Ю., Козлов М.В. (РФ), патентообладатель: ФГБОУ ВПО «Ярославский государственный технический университет» (RU), заявка 2013109334/05 от 01.03.2013, опубл. 27.07.2014.
3. Роторно-пульсационный аппарат для получения преимущественно систем «жидкость-жидкость» [Текст]: пат.2299091 РФ МПК B01F 3/08, B01F 7/28 / Сакович Г.В., Василишин М.С., Кухленко А.А., Сысолятин СВ., Карпов А.Г. (РФ), патентообладатель: Институт проблем химико-энергетических технологий СО РАН (РФ), заявка 2005135595/15 от 16.11.2005, опубл. 20.05.2007.
4. Диспергатор для обработки жидких сред [Текст]: пат.134443 РФ МПК B01F 5/00 / Раткевич И.К. (РФ), Гордеев А.Э. (РФ), Корнеев А.В. (РФ), Саттлер М. (CZ), Кормилицын В.И. (РФ), Сухарев В.Л. (РФ), патентообладатель: Общество с ограниченной ответственностью «ФАКТОР» (РФ), заявка 2013107490/05 от 21.02.2013, опубл. 20.11.2013.
5. Проточный ультразвуковой кавитационый реактор [Текст]: пат.2446874 РФ МПК B01J 19/10 / Молоствов В.Н. (РФ), патентообладатель: Молоствов Виталий Николаевич (РФ), заявка 2010123394/05 от 08.06.2010, опубл. 10.04.2012.
6. Хмелев, В.Н. Повышение эффективности ультразвуковой кавитационной обработки вязких и дисперсных сред / В.Н. Хмелев, Р.Н. Голых, С.С. Хмелев, Р.В. Барсуков, А.В. Шалунов; ООО «Центр ультразвуковых технологий». - Бийск, 2011. - 102 с. - Библиогр.: 23 назв. - Рус. Деп. в ВИНИТИ 25.02.2011 86-В2011.
7. Ультразвуковой кавитационный реактор для обработки и обеззараживания воды: пат. 130601 МПК B02F 1/36 / Кремнев Д.А., Кожевников Ю.А., Малышев В.В., Чижиков А.Г., Сербина Е.В., Орлова Т.В., Пашкина В.И., Козырев Е.Н., Росс М.Ю., Козырева О.Н., Терентьева Н.Н., Чирков В.Г. (РФ), патентообладатель: ГНУ ВИЭСХ РОССЕЛЬХОЗАКАДЕМИИ (РФ), заявка 2013108366/05 от 26.02.2013, опубл. 27.07.2013.
8. Ультразвуковой проточный реактор [Текст]: пат.2403085 РФ МПК B01J 19/10 / Борисов Ю.А., Леонов Г.В., Хмелев В.Н., Абраменко Д.С., Хмелев С.С., Шалунов А.В. (РФ), патентообладатель: ГОУ ВПО «АлтГТУ им. И.И. Ползунова» (РФ), заявка 2009115487/05 от 23.04.2009, опубл. 10.11.2010. - прототип.
Ультразвуковой проточный реактор, состоящий из технологической камеры с устройствами ввода-вывода и источника ультразвукового воздействия, отличающийся тем, что технологическая камера выполнена из полых цилиндров, имеющих продольные пазы в диаметрально противоположных стенках, полые цилиндры размещены параллельно и соединены между собой каналами прямоугольного сечения, ширина которых соответствует длине полых цилиндров, высота не превосходит половины разницы между внутренним диаметром цилиндрической камеры и внешним диаметром излучателя источника ультразвукового воздействия, устройства ввода-вывода выполнены в виде каналов прямоугольного сечения с поперечными размерами, соответствующими размерам каналов, соединяющих между собой полые цилиндры, источник ультразвукового воздействия выполнен в виде последовательно размещенных и акустически связанных между собой пьезоэлектрических преобразователей, количество которых соответствует количеству полых цилиндров технологической камеры, промежуточных устройств, каждое из которых имеет фланцевый узел герметичного присоединения к торцу полого цилиндра технологической камеры, и размещенных соосно внутри каждого полого цилиндра излучателей, выполненных в виде стержня ступенчато-переменного диаметра с переходами между участками разного диаметра, причем максимальный диаметр стержня меньше внутреннего диаметра полого цилиндра, расстояние между переходами от максимального до минимального диаметра излучателя соответствует половине длины волны ультразвуковых колебаний в материале излучателя, на внутренней поверхности цилиндрических объемов технологической камеры, напротив переходов от максимального до минимального диаметра излучателей,
установлены пластинчатые отражатели, имеющие форму усеченных конусов, направленных вершинами друг к другу, и содержащие перфорации размером менее четверти длины волны ультразвуковых колебаний в среде.
РИСУНКИ