Устройство для получения наночастиц металлов, насыщенных водородом

 

Предлагаемая полезная модель относится к области получения водородсодержащих наночастиц. Устройство для получения наночастиц металлов, насыщенных водородом, в жидкости с протонным типом проводимости, включающее абляционную камеру с пробкой и входным оптическим окном для лазерного излучения, массивную металлическую мишень, помещенную в жидкость, заполняющую абляционную камеру, и расположенный вне пределов абляционной камеры лазер с оптической системой, фокусирующей лазерное излучение через оптическое окно на мишень, дополнительно снабжено расположенным вне абляционной камеры источником постоянного тока и погруженными в рабочую жидкость анодом, выполненным из химически нейтрального проводящего материала, и катодом, выполненным из материала с высокой электропроводностью и электрически соединенным с мишенью. Предлагаемое устройство обеспечивает возможность насыщать водородом только зону абляции металлической мишени (водород выделяется лишь на самой мишени) и не насыщать водородом весь остальной объем рабочей жидкости, что дает возможность увеличить скорость получения наночастиц металлов, насыщенных водородом, а также существенно снизить энергетические затраты на проведение процесса и повысить его эффективность, и могут быть использованы для получения наночастиц различных металлов, насыщенных водородом (алюминия, титана, палладия, золота, железа и других).

Предлагаемая полезная модель относится к области получения водородсодержащих наночастиц.

Известен способ получения наночастиц алюминия и титана, насыщенных водородом, включающий лазерную абляцию в кювете с твердой алюминиевой или титановой мишенью, закрепленной на дне кюветы, массивной алюминиевой или титановой мишени в рабочей жидкости, обогащенной молекулярным водородом, пропускаемым через жидкость до и в процессе лазерной абляции [P.G. Kuzmin, G.A. Shafeev, G. Viau, B. Warot-Fonrose, M. Barberoglou, E. Stratakis, C. Fotakis; Applied Surface Science; 258 (2012) 9283-9287]. В качестве рабочей жидкости использовался этанол, пропанол или вода, очищенная обратным осмосом.

Известно устройство для получения алюминиевых наночастиц, насыщенных водородом, путем лазерной абляции массивной металлической мишени в жидкости, включающее в себя плоскодонную кювету, заполненную рабочей жидкостью, на дне которой закреплена металлическая мишень, лазер с оптической системой, фокусирующей лазерное излучение на поверхность мишени через слой рабочей жидкости, и систему пропускания газообразного водорода через рабочую жидкость [P.G. Kuzmin, G.A. Shafeev, G. Viau, В. Warot-Fonrose, M. Barberoglou, E. Stratakis, C. Fotakis; Applied Surface Science; 258 (2012) 9283-9287]. В качестве источника лазерного излучения использовались лазеры на парах меди, титан-сапфировый лазер, лазер на неодимовом стекле.

Недостатком известных способа и устройства является необходимость насыщать водородом весь объем жидкости, циркулирующей через кювету, до и во время лазерной абляции путем пропускания газа через жидкость, что усложняет и удорожает оборудование и технологический процесс в целом, приводит к нестабильности фокусировки лазерного излучения, снижает эффективность абляции и насыщения наночастиц водородом, уменьшает скорость получения наночастиц алюминия, насыщенных водородом и повышает энергозатраты на их получение.

Указанный технический результат достигается тем, что устройство для получения наночастиц металлов, насыщенных водородом, в жидкости с протонным типом проводимости, включающее абляционную камеру с пробкой и входным оптическим окном для лазерного излучения, массивную металлическую мишень, помещенную в жидкость, заполняющую абляционную камеру, и расположенный вне пределов абляционной камеры лазер с оптической системой, фокусирующей лазерное излучение через оптическое окно на мишень, дополнительно снабжено расположенным вне абляционной камеры источником постоянного тока и погруженными в рабочую жидкость анодом, выполненным из химически нейтрального проводящего материала, и катодом, выполненным из материала с высокой электропроводностью и электрически соединенным с мишенью.

Указанный технический результат достигается также тем, что в качестве материала катода используют металлы и полупроводники.

Указанный технический результат достигается также тем, что в качестве проводящего материала анода используют, графит или благородные металлы, например, золото или платину.

Указанный технический результат достигается также тем, что поверхность катода, расположенная в жидкости, защищена изолирующим кожухом.

Сущность полезной модели поясняется Фиг. 1, где: 1 - абляционная камера, 2 - пробка, 3 - источник постоянного тока, 4 - катод, 5 - изолирующий кожух для катода, 6 - анод, 7 - металлическая мишень для лазерной абляции, 8 - пучок лазерного излучения, 9 - фокусирующая линза, 10 - источник лазерного излучения с оптической системой, 11 - входное окно для лазерного излучения, 12 - рабочая жидкость.

Предлагаемое устройство для получения наночастиц металлов, насыщенных водородом, в жидкости с протонным типом проводимости, содержит абляционную камеру 1, изготовленную из металла или стекла, с пробкой 2, с входным оптическим окном 11 для лазерного излучения 8, массивную металлическую мишень 7, помещенную в рабочую жидкость 12, заполняющую абляционную камеру 1, и. расположенный вне пределов абляционной камеры 1, источник лазерного излучения с оптической системой доставки лазерного излучения 10, фокусирующей лазерное излучение 8 линзой 9. Ввод лазерного излучения осуществляется через входное оптическое окно 11 на мишень 7. Расположенный вне абляционной камеры источник постоянного тока 3 и анод 6. погруженный в рабочую жидкость 12, и токопроводящий катод 4, выполненный из хорошо проводящего материала (металлов или полупроводников), с изолирующим кожухом 5, выполненный из диэлектрического материала, например пластмассы. Анод 6, выполненный из химически нейтрального (устойчивого к воздействию рабочей жидкости при протекании электрического тока) проводящего материала, например, графита или благородных металлов, соединен с положительным выходом источника тока 3, а отрицательный выход источника тока 3 соединен с катодом 4, который другим своим концом электрически соединен с мишенью. Изолирующий кожух 5 для катода 4 способствует снижению площади контакта катода с рабочей жидкостью.

Предлагаемое устройство работает следующим образом.

Абляционную камеру 1 заполняют рабочей жидкостью 12 с протонным типом проводимости (например, этиловым спиртом). Между анодом 6 и катодом 4 от источника питания 3 подают постоянное напряжение от нескольких вольт до нескольких сотен вольт. Катодное смещение электрохимического потенциала аблируемой мишени 7 приводит к выделению газообразного водорода непосредственно на мишени. Количество водорода, восстанавливаемого из рабочей жидкости 12 на мишени 7, пропорционально протекающему току. Рабочее напряжение зависит от проводимости рабочей жидкости. Оптимальным режимом является тот, при котором скорость выделения водорода достигает максимума. После этого с источника лазерного излучения с оптической системой 10 на мишень 7 направляют сфокусированный с помощью фокусирующей линзы 9 лазерный пучок 8, плотность мощности которого на мишени 7 достаточна для ее абляции (1011 -1014 Вт/см2). Расплавленный диспергируемый материала мишени 7 оказывается непосредственно в области рабочей жидкости, наиболее обогащенной водородом. Часть водорода, растворенного в жидкости, переходит в наночастицы и не успевает его покинуть за время остывания наночастицы. Сбор коллоидного раствора наночастиц осуществляют при открытии пробки 2. Затем полученные наночастицы металлов, насыщенные водородом, отделяют от рабочей жидкости с помощью седиментации или центрифугирования рабочей жидкости.

Ниже приведены конкретные примеры использования предлагаемого устойства.

Пример 1. В качестве аблируемой мишени использована мишень из алюминия. В качестве рабочей жидкости использован этиловый спирт. Рабочее напряжение между анодом 6 и катодом 4 составляло 26 вольт, ток составлял 0,1 А.

Пример 2. В качестве аблируемой мишени использована мишень из титана. В качестве рабочей жидкости использован изопропиловый спирт. Рабочее напряжение между анодом 6 и катодом 4 составляло 24 вольт, ток составлял 0.2 А.

Пример 3. В качестве аблируемой мишени использована мишень из титана. В качестве рабочей жидкости использована вода. Рабочее напряжение между анодом 6 и катодом 4 составляло 25 вольт, ток составлял 0,1 А.

Во всех примерах использовался лазер на неодимовом стекле с длиной волны 1064 нм, частотой повторения 200 кГц, длительностью импульса 10 пс и средней мощностью 14 Ватт. Скорость генерации наночастиц составляет 50-100 мг наночастиц в час.

Предлагаемое устройство для получения наночастиц металлов, насыщенных водородом, обеспечивают возможность насыщать водородом только зону абляции металлической мишени (водород выделяется лишь на самой мишени) и не насыщать водородом весь остальной объем рабочей жидкости, что дает возможность увеличить скорость получения наночастиц металлов, насыщенных водородом, а также существенно снизить энергетические затраты на проведение процесса и повысить его эффективность. Предлагаемое устройство может быть использовано для получения наночастиц различных металлов, насыщенных водородом (алюминия, титана, палладия, золота, железа и других).

1. Устройство для получения наночастиц металлов, насыщенных водородом, в жидкости с протонным типом проводимости, содержащее абляционную камеру с пробкой и входным оптическим окном для лазерного излучения, массивную металлическую мишень, помещенную в жидкость, которой заполнена абляционная камера, и расположенный вне пределов абляционной камеры лазер с оптической системой, фокусирующей лазерное излучение через оптическое окно на мишень, отличающееся тем, что оно дополнительно снабжено расположенным вне абляционной камеры источником постоянного тока и погруженными в рабочую жидкость анодом, выполненным из химически нейтрального проводящего материала, и катодом, выполненным из материала с высокой электропроводностью и электрически соединенным с мишенью.

2. Устройство по п. 1, отличающееся тем, что в качестве материала катода используют металлы и полупроводники.

3. Устройство по п. 1, отличающееся тем, что в качестве химически нейтрального проводящего материала анода используют графит или благородные металлы, например, золото или платину.

4. Устройство по п. 1, отличающееся тем, что поверхность катода, расположенная в жидкости, защищена изолирующим кожухом.



 

Похожие патенты:

Многоцветная декоративная фасадная или стеновая панель с полимерным покрытием относится к оптике и светотехнике, использующей многослойные и поляризующие материалы на основе полимеров для получения ярких визуальных эффектов. Предложение может быть использовано декораторами и дизайнерами в рекламных целях для конструирования многоцветных панелей привлекающих внимание движущихся наблюдателей, изготовления декоративных бленд или покрытий, или индикаторных элементов для наземных, водных и воздушных транспортных средств, для конструирования козырьков или экранов с предупредительными надписями в наземных, водных и воздушных транспортных средствах и конструирования экранов с предупредительными надписями в зданиях.
Наверх