Центробежный анализатор дисперсного состава сварочного аэрозоля

 

Полезная модель относится к устройствам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды аэрозолями, а также для контроля аварийных выбросов в атмосферу. Центробежный анализатор дисперсного состава аэрозоля состоит из корпуса, неподвижно расположенного в корпусе криволинейного проточного канала и последовательно расположенных вдоль стенок канала полупроводниковых кондуктометрических датчиков. При движении воздуха с аэрозолем через криволинейный участок канала на частицы действует центробежная сила, и они осаждаются на стенке канала. Скорость движения частиц к стенке канала пропорциональна их размеру и массе, в начале канала осаждаются наиболее крупные частицы, а дальше по каналу оседают частицы меньших размеров, чем дальше по каналу, тем меньше размер осаждаемых частиц. Полупроводниковые кондуктометрические датчики чувствительны к осаждаемым на них частицам. Снимая показания датчиков, можно определять дисперсный состав аэрозоля в режиме реального времени, делая возможным непрерывный по времени мониторинг контролируемой среды.

Техническое решение относится к устройствам контроля состояния атмосферного воздуха и может быть использовано для мониторинга загрязнения окружающей среды аэрозолями, а также для контроля аварийных выбросов в атмосферу.

Существует много устройств для контроля дисперсного состава аэрозоля, в том числе путем осаждением частиц из потока воздушной среды. Наиболее распространенным и признанным в качестве стандарта в Европе, в частности в России, Англии, Франции, Бельгии и др. является устройство, принцип работы которого заключается в выделении из потока частиц аэрозоля и определения их массы. Выделение аэрозоля, как правило, осуществляется посредством пропускания проб воздуха через различные фильтры и по массе пыли, осажденной на фильтрах, определяют ее концентрацию в воздухе, по следующей формуле:

,

где m - масса пробы пыли, мг; Q - объемный расход воздуха через пробоотборник, м3/с; - время отбора пробы, с.

Основные преимущества конструкции такого устройства - получение массовой концентрации аэрозоля и отсутствие влияния его химического и дисперсного состава на результаты измерений. К недостаткам относится достаточно большая трудоемкость процесса измерения. Нет возможности контролировать процесс изменения концентрации аэрозоля в режиме реального времени.

Известно устройство для измерения концентрации частиц аэрозоля [1] газоанализатором на основе полупроводниковых кондуктометрических датчиков. Однако в данном устройстве аэрозоль осаждается на чувствительную поверхность датчика диффузией, что существенно затрудняет проведение контроля за фракционным составом аэрозоля.

Известно устройство для определения дисперсного состава аэрозоля [2], содержащее герметичный корпус, всасывающее устройство, вращающийся ротор, состоящий из двух вложенных друг в друга стаканов разного диаметра. При прокачивании воздуха с аэрозолем он вначале проходит внутри первого стакана, где оседает наиболее крупная пыль, потом внутри второго, где оседает более мелкая пыль. Недостатком данного устройства является невозможность измерения количества принудительно осаждаемых частиц аэрозоля в режиме реального времени и сложность обработки результатов измерений дисперсного состава аэрозоля.

Наиболее близким является устройство анализа дисперсного состава аэрозолей [3], содержащее герметичный корпус, всасывающее устройство, прямой вращающийся вокруг своей оси проточный канал с последовательно расположенными вдоль него устройствами определения концентрации аэрозоля, выполненными в виде разделяемых полых съемных цилиндров. Недостатком данного устройства является невозможность проведения измерений в режиме реального времени, а также большая трудоемкость измерений, связанная с необходимостью извлекать проточный канал из прибора.

Решаемая задача состоит в разработке устройства для проведения измерений в режиме реального времени, снижении трудоемкости измерений при повышении точности и селективности измерений.

Поставленная задача решается тем, что предлагается устройство - центробежный анализатор дисперсного состава аэрозоля, содержащий корпус с всасывающим устройством и проточным каналом для создания центробежной силы, приложенной к частицам аэрозоля, с последовательно расположенными вдоль него устройствами определения количества осажденного аэрозоля, согласно полезной модели, проточный канал установлен неподвижно и выполнен криволинейным, а устройствами определения количества осаждаемого аэрозоля являются полупроводниковые кондуктометрические датчики.

При этом проточный канал выполнен закругленным с радиусом кривизны R.

При этом проточный канал имеет круглое сечение.

При этом проточный канал имеет квадратное сечение.

При этом проточный канал имеет прямоугольное сечение.

Новизна заявленной полезной модели состоит в том, что ее конструкция обеспечивает дисперсное осаждение частиц аэрозоля вдоль измерительного проточного канала при движении воздушного потока с аэрозолем по криволинейному каналу, а не с помощью ротора, как в известных устройствах. При этом полупроводниковые датчики позволяют проводить измерения в режиме реального времени, делая возможным непрерывный по времени мониторинг контролируемой среды.

Описание полезной модели поясняется следующими графическими изображениями.

На фиг. 1 дано изображение центробежного анализатора аэрозоля (вид сверху).

На фиг. 2 приведен участок канала со схемой скоростей движения частиц аэрозоля.

На фиг. 3 приведен график дисперсного состава аэрозоля, где маркеры-квадраты - результаты полученные с помощью макета заявленного устройства, а маркеры-круги - паспортные данные небулайзера Р4 MED2000.

Устройство содержит: 1 - сборник аэрозоля, 2 - полупроводниковые кондуктометрические датчики, 3 - криволинейный канал, 4 - блока обработки информации, поступающей от датчиков 2, 5 - всасывающее устройство (аспиратор), 6 - корпус.

Устройство работает следующим образом. Сборник аэрозоля 1 забирает воздух с аэрозолем, который под действием разрежения, создаваемого всасывающим устройством 5, движется по криволинейному каналу 3. При движении воздушного потока через криволинейный канал 3 на частицы аэрозоля действует центробежная сила, возникающая из-за его кривизны, поэтому частицы начинают оседать на наружную стенку канала и на полупроводниковые датчики 2, расположенные последовательно вдоль нее. Сигналы от датчиков 2 поступают в блок обработки информации 4 и показываются в виде кривых на мониторе ЭВМ (на чертеже не показан). При практической реализации полезной модели можно использовать неограниченное количество датчиков, что позволит повысить точность.

Пример конкретной реализации центробежного анализатора аэрозоля. Макет центробежного анализатора аэрозоля состоял из неподвижно закрепленного в корпусе криволинейного канала с постоянным радиусом кривизны R=0,1 м, канал имел квадратное сечение со стороной L=0,005 м, в качестве датчиков использовались полупроводниковые датчики фирмы Figaro.

Считаем, что скорость воздуха внутри канала везде одинаковая и направлена вдоль оси канала. Примем следующие обозначения:

S - площадь сечения квадратного канала со стороной L,

R - радиус кривизны канала,

q - объемный расход воздуха через канал 0,00018 м3/с,

- вязкость воздуха 17,2 мкПа/с,

r - радиус частицы аэрозоля,

- плотность частицы аэрозоля 1000 кг/м3,

x - расстояние вдоль канала, отсчитывается от входного сечения канала до точки осаждения,

y - расстояние вдоль радиальной оси канала, отсчитывается от внешней стенки канала по направлению к центру кривизны канала в момент пересечения частицы аэрозоля входного сечения канала,

в - плотность воздуха.

Поток воздуха внутри канала двигается со средней скоростью

На частицы аэрозоля внутри потока действует центробежная сила Fц и сила Стокса Fs:

Vd - скорость дрейфа частицы вдоль радиальной оси,

С - коэффициент лобового сопротивления,

Reч - число Рейнольдса для частицы аэрозоля (считаем малым).

Приравнивая центробежную силу и силу Стокса получаем, что

Частица за одно и тоже время t пройдет расстояние y со скоростью Vd вдоль радиальной оси и расстояние x со скорость V вдоль канала (см. фиг. 2).

Используя формулу (*), получаем:

Так как в канале формируется течение Пуазейля, основной расход воздуха в канале происходит в его центральной части, тогда последнюю формулу приводим к виду:

Из последней формулы следует, что на расстоянии x от точки входа в канал будут оседать частицы с характерным радиусом r. Интенсивность отклика датчика прямо пропорциональна количеству осаждаемого на него аэрозоля, что позволяет определить дисперсный состав аэрозоля.

При испытаниях макетного образца центробежного анализатора аэрозоля для создания аэрозоля применялся небулайзер Р5 med2000. Реализуемость предлагаемого устройства подтверждается результатами испытаний путем сравнения измеряемой устройством дисперсности аэрозоля и паспортными данными использованного небулайзера Р4 MED2000. Результаты испытаний приведены на графике, показанном на фиг. 3, где маркеры-квадраты - результаты полученные с помощью заявляемого способа, а маркеры-круги - паспортные данные небулайзера Р4 MED2000.

Данный макет позволяет проводить измерения дисперсного состава аэрозоля с удовлетворительной точностью и демонстрирует возможность создания заявленного устройства.

Источники информации:

1. Патент на полезную модель РФ 95846, 29.12.2009, G01N 27/00 (2006.01) «ГАЗОАНАЛИЗАТОР НА ОСНОВЕ ПОЛУПРОВОДНИКОВЫХ КОНДУКТОМЕТРИЧЕСКИХ ДАТЧИКОВ».

2. Патент на изобретение СССР, авторское свидетельство 1288552 «Устройство для определения дисперсионного состава пыли».

3. Патент на изобретение СССР, авторское свидетельство 1627923 «Способ анализа дисперсного состава аэрозолей и устройство его осуществления».

1. Центробежный анализатор дисперсного состава аэрозоля, содержащий корпус с всасывающим устройством и проточным каналом для создания центробежной силы, приложенной к частицам аэрозоля, с последовательно расположенными вдоль него устройствами определения количества осажденного аэрозоля, отличающийся тем, что проточный канал установлен неподвижно и выполнен криволинейным, а устройствами определения количества осаждаемого аэрозоля являются полупроводниковые кондуктометрические датчики.

2. Центробежный анализатор по п.1, отличающийся тем, что проточный канал выполнен закруглённым с радиусом кривизны R.

3. Центробежный анализатор по п.1, отличающийся тем, что проточный канал имеет круглое сечение.

4. Центробежный анализатор по п.1, отличающийся тем, что проточный канал имеет квадратное сечение.

5. Центробежный анализатор по п.1, отличающийся тем, что проточный канал имеет прямоугольное сечение.



 

Наверх