Энергетическая установка
Полезная модель относится к теплоэнергетике, в частности к энергетическим установкам, предназначенным для производства электрической энергии и/или для совершения механической работы. Энергетическая установка содержит парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины. В состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара. Для этого установка снабжена тепловым насосом, контур которого включает испаритель, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины. Выход дополнительного компрессора через теплоотдающий контур испарителя и дроссельный клапан сообщен с тепловоспринимающим контуром конденсатора, выход которого сообщен со входом дополнительного компрессора. Кроме того установка снабжена паровой турбиной, выполненной с возможностью работы на один вал с парогазовой турбиной. На газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника, при этом, газовый выход конденсатора сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком, который через линию, включающую питательный насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя, сообщен с камерой сгорания и входом паровой турбины. Выход паровой турбины сообщен со вторым конденсатором, конденсатный выход которого через второй питательный насос связан с конденсатоотводчиком. Кроме того газовый выход конденсатора снабжен вакуумным насосом. Технический результат выражается в увеличении коэффициента использования тепла установки (отношение суммы мощности, отводимой от турбины на потребитель, и теплоты, отведенной от конденсатора на технологические нужды, к теплоте сгорания топлива в камере сгорания), Решение позволяет значительно расширить область применения установок данного типа, отсекая необходимость наличия источника пресной воды в районе применения установки. Это также уменьшает вредное воздействие установки на окружающую среду, уменьшая массу рабочего тела выводимого из цикла. 1 ил.
Полезная модель относится к теплоэнергетике, в частности к энергетическим установкам, предназначенным для производства электрической энергии и/или для совершения механической работы.
Известна энергетическая установка, содержащая снабженную выходом на полезную нагрузку парогазовую установку с вводом пара, выход которой подключен к первому входу подогревателя, выход которого подключен к первому входу конденсатора, первый выход которого сообщен с окружающей средой, первый контур циркуляции воды, подключенный ко второму входу и второму выходу конденсатора, включающий последовательно соединенные первый насос и холодильник, по его первому входу и первому выходу, а также второй контур циркуляции воды, подключенный ко входу ввода пара парогазовой установки и к первому контуру циркуляции воды, включающий последовательно соединенные второй насос и подогреватель, по его второму входу и второму выходу (см. заявку Великобритании 2074659, кл. F01K 21/04, опубл. 04.11.81).
Недостатками известной установки являются большие потери тепла с отходящей парогазовой смесью и большие потери воды из-за низкой эффективности работы холодильника.
Известна также энергетическая установка, содержащая снабженную выходом на полезную нагрузку парогазовую установку с вводом пара, выход которой подключен к первому входу подогревателя, первый выход которого подключен к первому входу конденсатора, первый выход которого сообщен с окружающей средой, первый контур циркуляции воды, подключенный ко второму входу и второму выходу конденсатора, включающий последовательно соединенные первый насос и холодильник, по его первому входу и первому выходу, а также второй контур циркуляции воды, подключенный ко входу ввода пара парогазовой установки и к первому контуру циркуляции воды, включающий последовательно соединенные второй насос и подогреватель, по его второму входу и второму выходу (см. а.с. СССР 547121, кл. F01 21/04, опубл. 07.12.82).
Недостатками известной установки являются большие потери тепла с охлаждающей водой и большие потери воды из-за низкой эффективности работы холодильника. Это объясняется тем, что при работе известного устройства большое количество тепла сбрасывается в атмосферу, а при ограничении сброса тепла в атмосферу не вся вода из парогазовой смеси извлекается в конденсаторе и также выбрасывается в атмосферу.
Наиболее близкой к предложенной энергетической установке является энергетическая установка, содержащая парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины, кроме того в состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара (см. Степанов И.Р. «Парогазовые установки. Основы теории, применение и перспективы». Апатиты, 2000, 100-103 стр.).
Существенными недостатками этого решения являются большие затраты обессоленной воды и низкий КПД установки, связанные с уходящей вместе с паром теплотой.
Задачей, на решение которой направлено предлагаемое техническое решение, является уменьшение потерь тепла и воды в окружающую среду.
Технический результат, достигаемый при решении поставленной задачи, выражается в увеличении коэффициента использования тепла установки (отношение суммы мощности, отводимой от турбины на потребитель, и теплоты, отведенной от конденсатора на технологические нужды, к теплоте сгорания топлива в камере сгорания). Решение позволяет значительно расширить область применения установок данного типа, отсекая необходимость наличия источника пресной воды в районе применения установки. Это также уменьшает вредное воздействие установки на окружающую среду, уменьшая массу рабочего тела выводимого из цикла.
Поставленная задача решается тем, что энергетическая установка, содержащая парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины, кроме того в состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара, отличается тем, что установка снабжена тепловым насосом, контур которого включает испаритель, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины, при этом выход дополнительного компрессора через теплоотдающий контур испарителя и дроссельный клапан сообщен с тепловоспринимающим контуром конденсатора, выход которого сообщен со входом дополнительного компрессора, кроме того установка снабжена паровой турбиной, выполненной с возможностью работы на один вал с парогазовой турбиной, кроме того, на газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника, при этом, газовый выход конденсатора сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком, который через линию, включающую питательный насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя, сообщен с камерой сгорания и входом паровой турбины, при этом выход паровой турбины сообщен со вторым конденсатором, конденсатный выход которого через второй питательный насос связан с конденсатоотводчиком. Кроме того, газовый выход конденсатора снабжен вакуумным насосом.
Сопоставительный анализ существенных признаков предлагаемого технического решения с существенными признаками аналогов и прототипа свидетельствует о его соответствии критерию «новизна».
Совокупность признаков отличительной части формулы полезной модели позволяют увеличить коэффициент использования тепла установки. При этом решение позволяет значительно расширить область применения установок данного типа, отсекая необходимость наличия источника пресной воды в районе применения установки. Это также уменьшает вредное воздействие установки на окружающую среду, уменьшая массу рабочего тела выводимого из цикла.
На фиг.1 показана схема энергетической установки.
На чертеже показаны средство отбора атмосферного воздуха 1, камера сгорания 2, компрессор 3, источник топлива 4 и пароподводящая линия 5, парогазовая турбина 6, привод потребителя механической энергии 7, теплообменник 8, конденсатор 9, вакуумный 10 и питательный 11 насосы, испаритель 12, паровая турбина 13, дополнительный компрессор 14, а также теплонасосная линия 15, трубопровод 16, конденсатоотводчик 17, дроссельный клапан 18, второй конденсатор 19 и второй питательный насос 20.
Энергетическая установка, содержит парогазовую турбину 6, выполненную с возможностью привода потребителя механической энергии 7 (например, электрогенератор или движитель судна) и компрессора 3, выполненного с возможностью отбора воздуха из атмосферы через средство 1 (например, фильтр). Выход компрессора 3 сообщен с камерой сгорания 2 топлива, связанной с источником топлива 4 и источником пара (пароподводящая линия 5), выход которой сообщен со входом парогазовой турбины 6. В состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара. Для этого установка снабжена тепловым насосом, контур которого включает испаритель 12, конденсатор 9 и дополнительный компрессор 14, выполненный с возможностью привода от парогазовой турбины 6. Газовый выход конденсатора 9 может быть снабжен вакуумным насосом 10. Выход дополнительного компрессора 14 через теплоотдающий контур испарителя 12 и дроссельный клапан 18 сообщен с тепловоспринимающим контуром конденсатора 9, выход которого сообщен со входом дополнительного компрессора 14. Кроме того установка снабжена паровой турбиной 13, выполненной с возможностью работы на один вал с парогазовой турбиной 6. На газоотводящей линии между выходом парогазовой турбины 6 и теплоотдающим контуром конденсатора 9 размещен теплоотдающий контур теплообменника 8. Газовый выход конденсатора 9 сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком 17, который через линию, включающую питательный насос 11 и последовательно связанные тепловоспринимающие контуры теплообменника 8 и испарителя 12, сообщен с камерой сгорания 2 и входом паровой турбины 13. Выход паровой турбины 13 сообщен со вторым конденсатором 19, конденсатный выход которого через второй питательный насос 20 связан с конденсатоотводчиком 17.
Газопаротурбинная установка работает следующим образом. Атмосферный воздух очищают в средстве отбора атмосферного воздуха 1, (например, в фильтре) сжимают компрессором 3 и направляют в камеру сгорания 2, куда подводят топливо из источника топлива 4. В зону горения из пароподводящей линии 5 подводят пар. Парогазовую смесь высокой температуры по трубопроводу 16 подают в парогазовую турбину 6. Работу парогазовой турбины 6 используют для сжатия воздуха в компрессоре 3 и приводе потребителя механической энергии 7 (например, выработки электроэнергии в электрогенераторе). Расширившуюся (отработанную) парогазовую смесь по трубопроводу 16 направляют в теплообменник 8, где утилизируют тепло отработанной парогазовой смеси. Из теплообменника 8 парогазовую смесь направляют в конденсатор 9, конденсируют паровую составляющую парогазовой смеси, а продукты сгорания топлива вакуумным насосом 10 (или непосредственно) отводят в атмосферу. Сконденсировавшийся пар посредством конденсатоотводчика 17 отбирают из конденсатора 9 и подают вместе с конденсатом от второго питательного насоса 20 в питательный насос 11, который повышает давление конденсата. Затем через теплообменник 8 и испаритель 12 пар направляют частично в камеру сгорания 2, частично в паровую турбину 13. Пар, отработавший в паровой турбине 13, конденсируется в конденсаторе 19. После чего конденсат поступает во второй питательный насос 20, где его давление поднимается до давления за конденсатором 9. Из питательного насоса 20 конденсат поступает к питательному насосу 11. Вторичный паротурбинный контур введен для утилизации избыточной теплоты, отведенной от конденсатора 9 тепловым насосом, которое не может быть эффективно передано в испарителе 12 воде, циркулирующей в основном контуре. Теплота конденсации пара отводится из конденсатора 9 хладагентом (например, водой) теплового насоса. Хладагент из конденсатора 9 по теплонасосной линии 15 поступает на вход дополнительного компрессора 14, кинематически связанного с валом парогазовой турбины 6, затем сжатый в компрессоре 14 хладагент с выхода компрессора 14 через теплоотдающие контуры испарителя 12, дроссель 18, поступает в конденсатор 9.
1. Энергетическая установка, содержащая парогазовую турбину, выполненную с возможностью привода потребителя механической энергии и компрессора, выполненного с возможностью отбора воздуха из атмосферы, выход которого сообщен с камерой сгорания топлива, связанной с источником топлива и источником пара, выход которой сообщен со входом парогазовой турбины, кроме того, в состав установки включено средство утилизации тепла отходящих газов, выполненное с возможностью его использования в качестве источника пара, отличающаяся тем, что установка снабжена тепловым насосом, контур которого включает испаритель, конденсатор и дополнительный компрессор, выполненный с возможностью привода от парогазовой турбины, при этом выход дополнительного компрессора через теплоотдающий контур испарителя и дроссельный клапан сообщен с тепловоспринимающим контуром конденсатора, выход которого сообщен со входом дополнительного компрессора, кроме того, установка снабжена паровой турбиной, выполненной с возможностью работы на один вал с парогазовой турбиной, кроме того, на газоотводящей линии между выходом парогазовой турбины и теплоотдающим контуром конденсатора размещен теплоотдающий контур теплообменника, при этом газовый выход конденсатора сообщен с атмосферой, а его конденсатный выход связан с конденсатоотводчиком, который через линию, включающую питательный насос и последовательно связанные тепловоспринимающие контуры теплообменника и испарителя, сообщен с камерой сгорания и входом паровой турбины, при этом выход паровой турбины сообщен со вторым конденсатором, конденсатный выход которого через второй питательный насос связан с конденсатоотводчиком.
2. Энергетическая установка по п.1, отличающаяся тем, что газовый выход конденсатора снабжен вакуумным насосом.