Светодиодный светильник

 

Полезная модель относится к осветительным устройствам и может быть использована для уличного, промышленного, бытового и архитектурно-дизайнерского освещения. Светодиодный светильник содержит светодиодный элемент, размещенный в полости зафиксированного на основании светопрозрачного корпуса в жидкой охлаждающей среде. Жидкая охлаждающая среда размещена в секторе излучения светодиодного элемента, при этом в нее введены находящиеся в твердой фазе теплопроводящие элементы, выполненные из светопрозрачного материала с плавучестью в охлаждающей среде равной нулю, причем количество и размеры твердых теплопроводящих элементов обеспечивают возможность их свободного взаимоскольжения в пределах полости светопрозрачного корпуса, который снабжен средством приведения охлаждающей среды в движение. Кроме того теплопроводящим элементам приданы магнитные свойства, с возможностью приведения в движение электромагнитным полем. При этом, по меньшей мере, часть поверхности находящихся в твердой фазе теплопроводящих элементов и неизлучающая поверхность светодиодного элемента снабжены светоотражающим покрытием, причем в этом случае количество находящихся в твердой фазе теплопроводящих элементов обеспечивает светопрозрачность охлаждающей среды. Кроме того теплопроводящие элементы выполнены упругими, с возможностью компенсации теплового расширения жидкой среды. Технический результат выражается в повышении коэффициента теплопередачи охлаждающей среды, тем самым повышая эффективность его охлаждения, что, в свою очередь, обеспечивает более высокую светоотдачу и увеличение срока работы светодиодного элемента. Кроме того, наличие дополнительных тел в охлаждающей среде рассеивающих свет, обеспечивает выравнивание параметров светового потока по всей площади формируемого светового пятна. 5 илл.

Полезная модель относится к осветительным устройствам и может быть использована для уличного, промышленного, бытового и архитектурно-дизайнерского освещения.

Известен светодиодный светильник с высокоэффективным конвекционным охлаждением, содержащий в качестве источника света светодиоды, установленные на наружной поверхности корпуса и подключенные гибким кабелем к блоку питания, оптическую линзу, корпус-радиатор, выполненный из полого профиля (см. RU 2433577, МПК H05B 33/00, 2011). Особенностью таких светильников является повышенная теплоотдача. Выделенное тепло может отводиться через радиаторы (в других моделях отводится через воздушный обдув нагреваемых элементов).

Однако радиаторы не только существенно увеличивают и утяжеляют конструкцию, но и отводят тепло только от одной внутренней половины светодиода, что достаточно далеко от точки нагрева, которой является p-n переход светодиода. Кроме того, воздушный обдув ограничен низкой теплопроводностью самого воздуха.

Известна светодиодная лампа с воздушным охлаждением (см. US 20110013383, МПК F2IV 29/00 F21V 21/084, 2011). В данном устройстве происходит активное охлаждение светодиодного элемента встроенным воздушным вентилятором.

Однако при достаточной эффективности устройства по прежнему недостаточно близко охлаждаемое место к месту разогрева, то есть к p-n переходу светодиода. При этом все еще низок коэффициент теплопередачи теплоносителя (воздушной среды). Данную проблему можно решить за счет увеличения скорости обдува, но это имеет определенные ограничения при условии не снижения массогабаритных и инерциальных параметров механизма охлаждения.

Наиболее близким аналогом к заявляемому устройству является светодиодный светильник, содержащий светодиодный элемент, размещенный в полости зафиксированного на основании светопрозрачного корпуса в жидкой охлаждающей среде (см. US 20110261563, МПК F2IV 29/00, F21S 4/00, 2011). Светильник состоит из светодиодного элемента, укрепленного на основании и охлаждающей среды состоящей из жидкой массы. Жидкая масса может быть представлена парафиновым маслом или другой массой, соответствующей задачам работы теплового режима светодиодного элемента. Данная конструкция позволяет наиболее полно реализовать теплопроводные особенности жидкой массы. Жидкая масса обтекает светодиодный элемент в пределах корпуса и, являясь более теплопроводной, чем воздух эффективно передает тепло от светодиодного элемента наружу. Кроме того, имея определенные светопрозрачные свойства, жидкая масса помогает эффективно рассеивать свет.

Однако эта конструкция имеет ряд недостатков, а именно недостаточный, по сравнению с твердыми материалами, значительно более низкий коэффициент теплопередачи, кроме того, формируемый световой поток имеет выраженную четкую направленность, что приводит к неравномерности светового поля. Эти недостатки ухудшают эксплуатационные характеристики светильника.

Задачей, на решение которой направлено предлагаемое техническое решение, является улучшение эксплуатационных характеристик светильника.

Технический результат, достигаемый при решении поставленной задачи, выражается в повышении коэффициента теплопередачи охлаждающей среды, тем самым повышая эффективность его охлаждения, что, в свою очередь, обеспечивает более высокую светоотдачу и увеличение срока работы светодиодного элемента. Кроме того, наличие дополнительных тел в охлаждающей среде рассеивающих свет, обеспечивает выравнивание параметров светового потока по всей площади формируемого светового пятна.

Поставленная задача решается тем, что светодиодный светильник, содержащий светодиодный элемент, размещенный в полости зафиксированного на основании светопрозрачного корпуса, в жидкой охлаждающей среде, отличается тем, что жидкая охлаждающая среда размещена в секторе излучения светодиодного элемента, при этом в нее введены находящиеся в твердой фазе теплопроводящие элементы, выполненные из светопрозрачного материала с плавучестью в охлаждающей среде равной нулю, причем количество и размеры твердых теплопроводящих элементов обеспечивают возможность их свободного взаимоскольжения в пределах полости светопрозрачного корпуса, который снабжен средством приведения охлаждающей среды в движение.

Кроме того теплопроводящим элементам приданы магнитные свойства, с возможностью приведения в движение электромагнитным полем.

При этом, по меньшей мере, часть поверхности находящихся в твердой фазе теплопроводящих элементов и неизлучающая поверхность светодиодного элемента снабжены светоотражающим покрытием, причем в этом случае количество находящихся в твердой фазе теплопроводящих элементов обеспечивает светопрозрачность охлаждающей среды.

Кроме того теплопроводящие элементы выполнены упругими, с возможностью компенсации теплового расширения жидкой среды.

Сопоставительный анализ признаков заявленного решения с признаками прототипа и аналогов свидетельствует о соответствии заявленного решения критерию «новизна».

При этом совокупность признаков отличительной части формулы полезной модели обеспечивают достижение технического результата, а именно, повышение коэффициента теплопередачи охлаждающей среды, тем самым повышение эффективности его охлаждения, что, в свою очередь, обеспечивает более высокую светоотдачу и увеличение срока работы светодиодного элемента. Кроме того, наличие дополнительных тел в охлаждающей среде рассеивающих свет, обеспечивает выравнивание параметров светового потока по всей площади формируемого светового пятна.

На фиг.1 - показана схема светодиодного светильника; на фиг.2 - показано прохождение лучей через жидкую массу и светопрозрачные твердые теплопроводящие элементы; на фиг.3 - прохождение лучей при охлаждении внешней стороны корпуса за счет конвекции жидкой массы и твердых теплопроводящих элементов посредством направленного действия электромагнитного поля от соответствующим образом ориентированных электромагнитов на твердые теплопроводящие элементы; на фиг 4. - прохождение лучей через жидкую массу, и отражение их как от твердых теплопроводящих элементов с нанесенным на них светоотражающим составом, так и от основания светодиодного элемента, также имеющего нанесенный светоотражающий состав; на фиг.5 - прохождение лучей в жестком и замкнутом корпусе.

На чертежах показаны светодиодный элемент 1, основание 2, жидкая охлаждающая среда 3, находящихся в твердой фазе светопрозрачные теплопроводящие элементы 4, корпус 5, средство 6 приведения охлаждающей среды 3 в движение, электромагнитные элементы 7, светоотражающие покрытия 8.

Светодиодный светильник (см. фиг.1) содержит светодиодный элемент 1, размещенный в полости светопрозрачного корпуса 5 на основании 2 в жидкой охлаждающей среде 3. Жидкая охлаждающая среда 3 (например, парафиновое масло либо масла аналогичных составов) размещена в секторе излучения светодиодного элемента 1. В нее введены находящиеся в твердой фазе теплопроводящие элементы 4, выполненные из светопрозрачного материала, плавучесть которых в охлаждающей среде 3 равна нулю. Плавучесть подбирается за счет того что находящийся в твердой фазе теплопроводящий элемент 4 имеет внутри воздушный пузырь приравнивающий плотность и объем находящихся в твердой фазе светопрозрачных теплопроводящих элементов 4 к плотности жидкой охлаждающей среды 3. Кроме того находящийся в твердой фазе теплопроводящий элемент 4 имеет коэффициент теплопроводности значительно больший чем у жидкой охлаждающей среды 3. В качестве находящихся в твердой фазе светопрозрачных теплопроводящих элементов 4 могут быть использованы, например прозрачные полимерные композиты с кварцевостеклянными наполнителями. Количество и размеры теплопроводящих элементов 4 обеспечивают возможность их свободного взаимоскольжения в пределах полости светопрозрачного корпуса 5, который снабжен средством 6 приведения охлаждающей среды 3 в движение, например насосом. При протекании охлаждающей среды 3 над светодиодным элементом 1, то есть в зоне излучения светодиодного элемента 1, световой поток проходит через жидкую охлаждающую среду 3 (см. фиг.2) оптические свойства значительно улучшатся, если твердые теплопроводящие элементы 4 изготовлены из светопрозрачных материалов.

Кроме стандартных методов конвекции, которые предполагают использование средств 6 приведения охлаждающей среды 3 в движение, например насосов, возможно использование электромагнитного поля. Для этого находящимся в твердой фазе теплопроводящим элементам 4 приданы магнитные свойства, с возможностью приведения в движение электромагнитным полем, возбуждаемым соответствующим образом ориентированными электромагнитными элементами 7 (см. фиг.3), которое воздействует на теплопроводящие элементы 4, имеющие определенные магнитные свойства, и заставляет их двигаться в заданном направлении, а вместе с ними увлекается в движение жидкая масса 3 за счет имеющегося у находящихся в твердой фазе теплопроводящих элементов 4 определенного сопротивления в жидкости. Магнитные свойства теплопроводящим элементам 4 могут быть приданы им через применение в теплопроводящих элементах 4, например, прозрачных ферромагнитных наполнителей.

Часть поверхности находящихся в твердой фазе теплопроводящих элементов 4 и неизлучающая поверхность светодиодного элемента 1 снабжены светоотражающим покрытием 8, причем в этом случае количество находящихся в твердой фазе теплопроводящих элементов 4 обеспечивает светопрозрачность жидкой охлаждающей среды 3. Снабжение находящихся в твердой фазе теплопроводящих элементов 4 и основания светодиода 2 светоотражающим покрытием 8 позволит световому излучению от светодиодного элемента 1 с минимальными потерями, переотражаясь от твердых теплопроводящих элементов 4 и основания светодиода 2, излучаться во внешнюю среду (см. фиг.4).

Находящиеся в твердой фазе теплопроводящие элементы 4 выполнены упругими, с возможностью компенсации теплового расширения жидкой охлаждающей среды 3. В процессе работы светодиодного элемента 1 (см. Фиг.5) при любых режимах охлаждения возможно нагревание как основания 2 светодиодного элемента 1 со всем светопрозрачным корпусом 5, так и жидкой охлаждающей среды 3. При этом плотность жидкой охлаждающей среды 3 уменьшается, что при закрытом цикле охлаждения может привести к нежелательному увеличению давления. Чтобы компенсировать избыточное давление Р жидкой охлаждающей среды 3 твердые теплопроводящие элементы 4 изготавливают таким образом, что воздушная полость, находящаяся в них легко подвергается сжатию за счет соответствующей толщины и гибкости находящихся в твердой фазе теплопроводящих элементов 4, что в свою очередь приводит к компенсации избыточного давления.

Светодиодный светильник работает следующим образом.

Светодиодный элемент 1, находясь на основании 2 светодиодного элемента 1, излучает свет и тепло в жидкую охлаждающую среду 3. Жидкая охлаждающая среда 3 нагревается и передает тепло на основание 2 светодиодного элемента 1 и соответственно корпусу 5. Наличие находящихся в твердой фазе светопрозрачных теплопроводящих элементов 4 увеличивает в статическом состоянии передачу тепла за счет суммарного объемного уменьшения теплового сопротивления, и соответственно суммарного увеличенного коэффициента теплопередачи. При конвекции жидкой охлаждающей среды 3 теплопередача увеличивается, так как находящиеся в твердой фазе теплопроводящие элементы 4 непосредственно контактируют со светодиодным элементом 1.

1. Светодиодный светильник, содержащий светодиодный элемент, размещенный в полости зафиксированного на основании светопрозрачного корпуса в жидкой охлаждающей среде, отличающийся тем, что жидкая охлаждающая среда размещена в секторе излучения светодиодного элемента, при этом в нее введены находящиеся в твердой фазе теплопроводящие элементы, выполненные из светопрозрачного материала с плавучестью в охлаждающей среде, равной нулю, плавучесть которых в охлаждающей среде равна нулю, причем количество и размеры теплопроводящих элементов обеспечивают возможность их свободного взаимоскольжения в пределах полости светопрозрачного корпуса, который снабжен средством приведения охлаждающей среды в движение.

2. Светодиодный светильник по п.1, отличающийся тем, что теплопроводящим элементам приданы магнитные свойства с возможностью приведения в движение электромагнитным полем.

3. Светодиодный светильник по п.1, отличающийся тем, что, по меньшей мере, часть поверхности находящихся в твердой фазе теплопроводящих элементов и неизлучающая поверхность светодиодного элемента снабжены светоотражающим покрытием, причем в этом случае количество находящихся в твердой фазе теплопроводящих элементов обеспечивает светопрозрачность охлаждающей среды.

4. Светодиодный светильник по п.1, отличающийся тем, что теплопроводящие элементы выполнены упругими с возможностью компенсации теплового расширения жидкой среды.



 

Похожие патенты:

Полезная модель относится к устройствам компактных люминесцентных интегрированных ламп и может использоваться для повышения их производительности без каких-либо конструктивных изменений технологии изготовления ламп.

Светильник светодиодный уличный наружный на столб относится к осветительным устройствам на базе светодиодов и может применяться для освещения улиц и дорог.

Уличный светодиодный светильник на столб направленного действия для наружного освещения улиц (прожектор уличного освещения) относится к светотехнике, а именно, к устройствам с применением точечного источника света, и может быть использован в качестве стационарного светильника уличного освещения.
Наверх