Подруливающее устройство

 

Полезная модель относится к судостроению и может быть использована при создании движительных устройств для причаливания и маневрирования судов.

Подруливающее устройство включает корпус проточного канала с установленным на нем через опорную платформу электродвигателем. Внутри корпуса проточного канала размещены гребной винт со ступицей и гондола, внутри которой находится конический редуктор. Опорная платформа выполнена составной из двух элементов. Верхний элемент выполнен в виде цилиндра, а нижний - в виде усеченного конуса. На внешних боковых поверхностях элементов закреплены ребра жесткости. При этом на боковой поверхности нижнего элемента и в ребрах жесткости выполнены отверстия, а число ребер жесткости может быть равно четырем. Поперечные ребра жесткости выполнены на внешней поверхности корпуса проточного канала в форме восьмигранника, а гондола и ступица гребного винта имеют совместную каплевидную форму.

Использование технического устройства позволяет улучшить его массово-габаритные характеристики.

Полезная модель относится к судостроению и может быть использована при создании движительных устройств для подруливания и маневрирования судов.

Известны подруливающие устройства, в конструкции которых заложен водометный принцип работы (см. например, патент РФ 2060205, 1992 год). Известные устройства обладают недостаточно высокими тяговыми и эксплуатационными характеристиками.

Наиболее близким по технической сущности и достигаемому результату к заявляемому техническому решению является подруливающее устройство, включающее корпус проточного канала, электродвигатель, установленный на нем через опорную платформу, гондолу с размещенным внутри нее коническим редуктором и гребной винт со ступицей (см. сайт www.moreman.ru, подруливающее устройство фирмы «Lewmar», Англия). Недостатком известного устройства является недостаточные его массово-габаритные храктеристики.

Целью настоящей полезной модели является улучшение массово-габаритных характеристик подруливающего устройства за счет повышение его жесткости.

Указанная цель достигается тем, что в известном подруливающем устройстве, включающем корпус проточного канала, электродвигатель, установленный нам нем через опорную платформу, гондолу с размещенным внутри нее коническим редуктором и гребной винт со ступицей, в нем опорная платформа изготовлена составной из двух элементов с ребрами жесткости на их боковых внешних поверхностях, верхний элемент опорной платформы, примыкающий к электродвигателю выполнен в виде цилиндра, а нижний элемент, стыкующийся с корпусом проточного канала, выполнен в виде усеченного конуса. На боковой поверхности нижнего элемента выполнены отверстия, а число ребер жесткости на этом элементе может быть равно четырем. При этом ребра жесткости нижнего элемента изготовлены с отверстиями. На внешней поверхности корпуса проточного канала выполнены поперечные ребра жесткости в виде восьмигранников, а гондола и ступица гребного винта имеют совместную каплевидную форму.

При размещении приводного электродвигателя на корпусе проточного канала электродвигатель оказывается силовое воздействие на корпус, приводящее к деформации конструкции. Предлагаемое техническое решение практически исключает такие деформации за счет выполнение опорной платформы с ребрами жесткости и соответствующей формой элементов, из которых состоит сама платформа. Именно такая комбинация позволяет получить максимальный эффект. Верхний элемент имеет цилиндрическую форму, а нижний - форму усеченного конуса. Нахождение такого сочетания стало возможным благодаря большому числу параметрических прочностных расчетов, в которых в качестве критерия оптимизации была выбрана жесткость конструкции. Выполнение отверстий на боковой поверхности нижнего элемента позволяет осуществлять визуализацию состояния деталей, передающих крутящий момент на конический редуктор. Как показали расчеты, число ребер может быть равным четырем. При дальнейшем их увеличении жесткость практически не повышается, однако увеличивается общий вес и металлоемкость конструкции. Выполнение опорной платформы составной позволяет упростить монтаж устройства и его эффективный ремонт. Выполнение отверстий в ребрах жесткости нижнего элемента позволяет не только без ущерба снизить их вес, но и служат технологическими отверстиями для транспортирования подруливающего устройства, например, с помощью подъемного крана. Установка на внешней поверхности корпуса проточного канала поперечных ребер жесткости обеспечивает снижение толщины этого корпуса и повышение надежности его работы на нерасчетных режимах, когда на внешнюю поверхность корпуса проточного канала воздействуют посторонние предметы, находящиеся в воде. Поперечные ребра жесткости на внешней поверхности корпуса проточного канала могут иметь различную форму, в том числе и восьмигранную, как одну из наиболее технологичных. Гондола и ступица гребного винта, как и сам винт, находятся в проточном канале. И если форму гребного винта изменить практически невозможно (она определяется гидродинамическими, прочностными и другими расчетами), то форму гондолы и ступицы необходимо сделать максимально обтекаемой для снижения гидравлического сопротивления, так как чем ниже это сопротивление, тем меньше завихрения в проточном канале и тем меньше силовое воздействие на корпус проточного канала. Следовательно, можно сделать корпус проточного канала тоньше при прочих равных условиях, и тем самым снизить вес корпуса. Наименьшее гидравлическое сопротивление возникает при выполнении гондолы и ступицы совместно каплевидной формы.

Предлагаемая конструкция подруливающего устройства приведена на фигуре со следующими обозначениями:

1 - корпус проточного канала;

2 - электродвигатель;

3 - гондола;

4 - гребной винт;

5 - верхний элемент опорной платформы;

6 - нижний элемент опорной платформы;

7 - ребра жесткости;

8 - отверстия нижнего элемента;

9 - отверстия в ребрах жесткости;

10 - поперечные ребра жесткости;

11 - ступица гребного винта.

Подруливающее устройство состоит из корпуса проточного канала 1, на котором установлен электродвигатель 2 через опорную платформу, которая изготовлена составной из двух элементов: верхнего элемента 5, выполненного в виде цилиндра, и нижнего элемента 6, выполненного в виде усеченного конуса. На боковых внешних поверхностях элементов 5 и 6 опорной платформы приварены ребра жесткости 7. Если на верхнем элементе 5 число ребер жесткости не лимитировано ввиду их небольшого размера, то на нижнем элементе 6 число ребер жесткости равно четырем. На боковой поверхности нижнего элемента 6 выполнены отверстия 8 (данном случае их тоже четыре). Отверстия 9 выполнены и в ребрах жесткости нижнего элемента 6. На внешней поверхности -корпуса проточного канала 1 выполнены два восьмигранных ребра жесткости 10. Гондола 3 и ступица 11 гребного винта 4 имеют совместную каплевидную форму.

Подруливающее устройство работает следующим образом. Крутящий \момент от электродвигателя 2 передается через вал и конический редуктор, расположенный в гондоле 3, на гребной винт 4. Вал и конический редуктор на фигуре не показаны. Вращение винта 4 создает усилие, передающееся судну для его эффективного причаливания, или маневрирования.

В предлагаемой конструкции подруливающего устройства реализовано оптимальное сочетание жесткости и массово-габаритных характеристик, что позволяет снизить вес устройства и его стоимость.

1. Подруливающее устройство, включающее корпус проточного канала, электродвигатель, установленный на нем через опорную платформу, гондолу с размещенным внутри нее коническим редуктором и гребной винт со ступицей, отличающееся тем, что опорная платформа изготовлена составной из двух элементов с ребрами жесткости на их боковых внешних поверхностях, верхний элемент опорной платформы, примыкающий к электродвигателю, выполнен в виде цилиндра, а нижний элемент, стыкующийся с корпусом проточного канала, выполнен в виде усеченного конуса.

2. Подруливающее устройство по п.1, отличающееся тем, что на боковой поверхности нижнего элемента выполнены отверстия.

3. Подруливающее устройство по п.1, отличающееся тем, что ребра жесткости на боковой поверхности нижнего элемента выполнены с отверстиями.

4. Подруливающее устройство по п.3, отличающееся тем, что число ребер жесткости равно четырем.

5. Подруливающее устройство по п.1, отличающееся тем, что на внешней поверхности корпуса проточного канала выполнены поперечные ребра жесткости.

6. Подруливающее устройство по п.5, отличающееся тем, что поперечные ребра жесткости выполнены в форме восьмигранника.

7. Подруливающее устройство по п.1, отличающееся тем, что гондола и ступица гребного винта имеют совместную каплевидную форму.



 

Наверх