Прирабатываемое уплотнение турбомашины

 

Полезная модель относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций. Элемент прирабатываемого уплотнения турбины, выполнен из адгезионно соединенных между собой частиц порошкового материала. При этом элемент выполнен составным, содержащим несущую и прирабатываемую части, причем несущая часть выполнена из порошковой высоколегированной стали состава: Сr - от 10,0 до 16,0%, Мо - от 0,8 до 3,7%, Fe - остальное, с размерами частиц порошка от 10 мкм до 180 мкм. Прирабатываемая часть выполнена из механической смеси порошковой высоколегированной стали с размерами частиц порошка от 10 мкм до 150 мкм, состава: Сr - от 14,0 до 18,0%, Мо - от 0,7 до 1,4%, Si - от 0,2 до 1,4%, Mn - от 0,1 до 0,5%, Fe - остальное, при содержании фракций порошка размерами: менее 40 мкм - от 30% до 40%, от 40 мкм до 70 мкм - 40% до 50%, от 70 мкм до 140 мкм - 10% до 20%, более 140 мкм - остальное, но не более 6%. Материал прирабатываемой части может содержать порошковый гексагональный нитрид бора в количестве от 0,5% до 10,0% или С - от 0,01 до 0,03%, Ni - от 0,1 до 0,3%, Nb - от 0,4 до 0,8%, S - от 0,01 до 0,03%. 1 н.з. и 23 з.п. ф-лы, 1 прим.

Полезная модель относится к машиностроению, в частности к уплотнениям зазоров проточной части турбомашин, длительно работающих в условиях повышенных температур и высокочастотных вибраций.

Эффективность работы газотурбинных двигателей и установок, а также паровых турбин зависит герметичности уплотнения между вращающимися лопатками и внутренней поверхностью корпуса в вентиляторе, компрессоре и турбине. Одним из основных видов подобных уплотнений являются истираемые уплотнения, герметичность которых обеспечивается за счет прорезания выступами на торцах лопаток канавок в истираемом уплотнительном материале. Уплотнения турбин выполняют например, используя плетеные металлические волокна, соты [патент США N5080934, МПК. F01D 11/08, 427/271, 1991] или спеченные металлические частицы. Приработка этих уплотнений происходит за счет его высокой пористости и его низкой прочности. Последнее обуславливает невысокую эрозионную стойкость уплотнительных материалов, что приводит к быстрому износу уплотнения. В качестве прирабатываемых уплотнений в современных двигателях и установках используют также газотермические покрытия, имеющих, по сравнению с вышеописанными материалами, меньшую трудоемкость изготовления.

Известно прирабатываемое уплотнение турбомашины [патент США 4291089], получаемое методом газотермического напыления порошкового материала. При этом уплотнение формируется в виде покрытия, которое наносится непосредственно на кольцевой элемент корпуса турбомашины в зону уплотнения между корпусом и лопаткой.

Недостатком известного уплотнения является невозможность одновременного обеспечения высокой прирабатываемости и износостойкости покрытия.

Известно также прирабатываемое уплотнение турбомашины [патент США 4936745], выполненное в виде высокопористого керамического слоя с пористостью от 20 до 35 объемных %.

Недостатком известного уплотнения является низкая эрозионная стойкость и прочность.

Наиболее близким по технической сущности и достигаемому результату к заявляемому является прирабатываемое уплотнение турбомашины, выполненное из частиц порошкового наполнителя адгезионно соединенных между собой в монолитный материал [патент РФ 2039631, МПК B22F 3/10, Способ изготовления истираемого материала

, 1995]. При этом уплотнение включает заполненные в сотовые ячейки и спеченные в вакууме или защитной среде гранулированный прошковый материл состава Cr-Fe-NB-C-Ni.

Известный материал прирабатываемого уплотнения турбомашины [патент РФ 2039631, МПК B22F 3/10, Способ изготовления истираемого материала, 1995] используется для уплотнения, которое выполнено в виде жестко соединенного со статором слоя сотовой структуры. При соприкосновении выступов на торце лопатке с сотовой структурой острые кромки гребешков притупляются, что приводит к снижению эффективности уплотнения. При этом слой сотовой структуры может быть закреплен на элементе турбомашины методом сварки или пайки [например, патент РФ 2277637, МПК F01D 11/08, 2006г.].

Процесс изготовления и прикрепления сотовой структуры достаточно сложен, трудоемок, а также связан с большими временными затратами. При этом, сотовая структура может быть соединена как с кольцевым элементом турбомашины, так и с отдельными, образующими кольцо вставками [например, патент РФ 2287063, МПК F01D 11/08, 2006 г.].

Недостатками прототипа являются невозможность одновременного обеспечения высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также необходимости использования сотовых ячеек.

В этой связи, использование уплотнения, не содержащего слоя сотовой структуры, а выполненного из монолитного материала допускающими врезание в него выступов лопатки и снижающими их износ в процессе эксплуатации, привело бы к дальнейшему повышению эффективности работы турбомашин.

Техническим результатом заявляемой полезной модели является обеспечение высокой прирабатываемости, механической прочности и износостойкости материала уплотнения, а также снижения трудоемкости его изготовления.

Технический результат достигается тем, что прирабатываемое уплотнение турбомашины, выполненное из адгезионно соединенных между собой в монолитный материал частиц порошкового наполнителя, отличающееся тем, что в качестве наполнителя используется высоколегированная сталь состава: Сг - от 16,0 до 18,0%, Мо - от 0,7 до 1,6%, Fe - остальное, а размеры частиц порошка наполнителя составляют от 10 мкм до 150 мкм, причем содержание частиц размером от 10 мкм до 60 мкм составляет не менее 80% от общего объема частиц.

Технический результат достигается также тем, что прирабатываемое уплотнение выполнено спеканием в вакууме или защитной среде, обеспечивающим величину прочности сцепления частиц наполнителя от 20 до 100% от прочности частиц, при локальной прочности сцепления частиц в зоне контакта с контр-телом от 0,5 до 12% от прочности частиц наполнителя.

Технический результат достигается также тем, что прирабатываемое уплотнение дополнительно содержит: Са в пределах от 0,01 до 0,2% или СаF2 в количестве от 4 до 11% или BN в количестве от 4 до 11% или BN+BaSO4 в количестве от 4 до 14% или Мn в количестве от 0,2 до 0,6% или Si в количестве от 0,2 до 1,6%.

Технический результат достигается также тем, что прирабатываемое уплотнение дополнительно содержит: Мn - от 0,2 до 0,6%, Si - от 0,2 до 1,6% или Si в количестве от 0,2 до 1,6%, Мn в количестве от 0,2 до 0,6%, С в количестве от 0,01 до 0,03% или в% вес: Si - от 0,2 до 1,6%, Мn - от 0,2 до 0,6%, С - от 0,01 до 0,03%, Ni - от 0,1 до 0,3%, Nb - от 0,4 до 0,8%, S - от 0,01 до 0,03%.

Исследованиями авторов было установлено, что в определенных условиях возможно создание материала для уплотнений обладающего с одной стороны, достаточно высокими механической прочностью и износостойкостью, позволяющими изготавливать из него элементы уплотнений, не разрушающиеся в условиях эксплуатации, а с другой -обладать высокой прирабатываемостью. Совмещение высокой механической прочности и прирабатываемости в разработанном материале для уплотнений, объясняется, в частности, тем, что прочность сцепления частиц наполнителя, образующего материал весьма высока, тогда как в результате мгновенного ударного-теплового воздействия в условиях эксплуатации уплотнения на отдельную частицу наполнителя, кинетическая энергия удара переходит в тепловую энергию. В результате этого, прочность сцепления частиц на границе рассматриваемой частицы резко снижается и в результате удара происходит его отрыв. В целом же процесс прирабатываемости уплотнения складывается из совокупности единичных процессов отрыва частиц наполнителя в результате снижения прочности сцепления на границе между частицами порошкового наполнителя. Кроме того, отрыв и унос частицы приводит к отводу излишней теплоты из зоны приработки и не позволяет нагреваться основной массе материала. Таким образом реализуется совмещение прочности сцепления частиц наполнителя составляющую величину от 20 до 100% от прочности частиц и локальной прочности сцепления частиц в зоне контакта с контр-телом от 0,5 до 12% от прочности частиц наполнителя. В связи с дискретным характером взаимодействия системы «уплотнение-лопатка», практически, после приработки происходит их безконтактное взаимодействие.

Однако, для реализации описанного механизма прирабатываемости уплотнения необходимо обеспечить ряд условий. К этим условиям относятся: соотношение прочности сцепления между частицами наполнителя должна составлять величину от 20 до 100% от прочности частиц; локальная прочность сцепления между частицами в зоне контакта с контр-телом должна быть от 0,5 до 12% от прочности частиц наполнителя; размеры частиц наполнителя должны составлять величину от 10 мкм до 150 мкм, причем содержание частиц размером от 10 мкм до 60 мкм должно составлять не менее 80% от общего объема частиц.Пример. В качестве основы для получения материала для прирабатываемого уплотнения использовался металлический порошок составов: 1) Cr-14,0%, Мо-от 0,5%, Fe - остальное - Н.Р.(неудовлетворительный результат); 2) Cr-16,0%, Мо - от 0,7%, Fe - остальное - У.Р. (удовлетворительный результат); 3)Сr-17,0%, Мо-1,2%, Fe - остальное-У.Р.; 4) Cr-18,0%, Мо-1,6%, Fe - остальное - У.Р. 5) Cr-20,0%, Мо-1,9%, Fe - остальное-Н.Р. Размеры частиц наполнителя составляли величины: 5-7 мкм - Н.Р.; 10 мкм- У.Р.; 30 мкм- У.Р.; 63 мкм- У.Р.; 100 мкм - У.Р.; 150 мкм- У.Р.; 160 мкм - Н.Р. Содержание частиц размером от 10 мкм до 60 мкм от общего объема частиц,% составляло: менее 80%Н.Р.; не менее 80%- У.Р. Исходный порошковый материал дополнительно содержал следующие компоненты: 1) Са-0,01%; 0,1%; 0,2%; 2) CaF 2-4%; 8%; 11%; 3) BN-4%; 6%; 11%; 4) (BN+BaSO4 )-4%; 9%; 14%; 5) Mn-0,2%; 0,4%; 0,6%; 6) Si-0,2%; 1,1%; 1,6%; 7) (Mn+Si): Mn-0,2%; 0,4%; 0,6%; Si-0,2%; 1,1%; 1,6%; 8) (Mn+Si+C): Mn-0,2%; 0,4%; 0,6%; Si-0,2%; 1,1%; 1,6%; С-0,01%; 0,03%;

9) (Mn + Si+C+Ni+Nb+S): Mn - 0,2%; 0,4%; 0,6%; Si - 0,2%; 1,1%; 1,6%; С - 0,01%; 0,03%; Ni - 0,1%; 0,3%; Nb -0,4%; 0,8%. Материал был изготовлен: 1) спеканием в вакууме; 2) спеканием в защитной среде. Спекание одной части заготовок проводили при температуре 1200±100°С в вакуумной электропечи ОКБ 8086 при остаточном давлении в камере менее 10-2 мм рт. ст., а другой части - при той же температуре в среде осушенного диссоциированного аммиака, в засыпке из обожженного тонкомолотого глинозема. Давление прессования при изготовлении заготовок для всех вариантов было одинаковым и принято равным 70 кгс/мм 2. Механические свойства полученного материала составили: твердость НВ от 131 до 144; в = 28,135,4 кгс/мм2; т, =17,223,9 кгс/мм2; КС = 1,161,55 кгм/см2.

Результаты испытаний образцов уплотнений из разработанного материала в условиях эксплуатации показали сочетание высоких прочностных характеристик уплотнений, с их хорошей прирабатываемостью.

1. Прирабатываемое уплотнение турбомашины, выполненное из адгезионно соединенных между собой в монолитный материал частиц порошкового наполнителя, отличающееся тем, что в качестве наполнителя используется высоколегированная сталь состава: Cr - от 16,0 до 18,0%, Мо - от 0,7 до 1,6%, Fe - остальное, а размеры частиц порошка наполнителя составляют от 10 до 150 мкм, причем содержание частиц размером от 10 до 60 мкм составляет не менее 80% от общего объема частиц.

2. Прирабатываемое уплотнение по п.1, отличающееся тем, что выполнено спеканием в вакууме или защитной среде, обеспечивающим величину прочности сцепления частиц наполнителя от 20 до 100% от прочности частиц, при локальной прочности сцепления частиц в зоне контакта с контртелом от 0,5 до 12% от прочности частиц наполнителя.

3. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит Са в пределах от 0,01 до 0,2%.

4. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит CaF 2 в количестве от 4 до 11%.

5. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит BN в количестве от 4 до 11%.

6. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит BN+BaSO4 в количестве от 4 до 14%.

7. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит Mn в количестве от 0,2 до 0,6%.

8. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит Si в количестве от 0,2 до 1,6%.

9. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит Si в количестве от 0,2 до 1,6%, Mn в количестве от 0,2 до 0,6%.

10. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит Si в количестве от 0,2 до 1,6%, Mn в количестве от 0,2 до 0,6%, С в количестве от 0,01 до 0,03%.

11. Прирабатываемое уплотнение по любому из пп.1 и 2, отличающееся тем, что дополнительно содержит, вес.%: Si - от 0,2 до 1,6%, Mn - от 0,2 до 0,6%, С - от 0,01 до 0,03%, Ni - от 0,1 до 0,3%, Nb - от 0,4 до 0,8%, S - от 0,01 до 0,03%.



 

Наверх