Устройство для сепарации сыпучей смеси в текучей среде

 

Использование: преимущественно в сельском хозяйстве для очистки и сортировки семян злаковых, травяных и других культур, на селекционных станциях, в фермерских хозяйствах, в мукомольном и комбикормовом производстве, а также при производстве строительных материалов, в пищевой, химической, угольной промышленности для обогащения угля и в других отраслях народного хозяйства. Сущность: устройство для сепарации сыпучей смеси в текучей среде содержит бункер с вибролотком, установленный под ним генератор, с расположенными одна под другой и под острым углом к вертикали жесткими стенками, шаг и ширина расположения которых увеличивается сверху донизу, и связанный с источником подачи воздуха под давлением и охваченный боковыми стенками, а также сборники фракций. Конец каждой жесткой стенки по всей ее длине снабжен расположенной к ней под углом дополнительной стенкой, ширина которой меньше расстояния между смежной сверху жесткой стенкой, которые расположены с сдвигом по горизонтали, с образованием зазора относительно нижней жесткой стенки, и камеры поворота воздушного потока на входе в зазор, при этом камеры поворота и зазоры увеличиваются сверху к низу. Технические преимущества: увеличение количества циркуляционных зон без риска срыва генерации; возникновение дополнительных аэродинамических эффектов в виде зон микровихрей; упрощение конструкции устройства; упрощение технологии сепарации; улучшение аэродинамических параметров устройства. 1 независим, п. ф-лы. 2 ил.

Полезная модель относится к способам и устройствам для воздушной сепарации сыпучих материалов и может быть использована, преимущественно, в сельском хозяйстве для очистки и сортировки семян злаковых, травяных и других культур, на селекционных станциях, в фермерских хозяйствах, в мукомольном и комбикормовом производстве, а также при производстве строительных материалов, в пищевой, химической, угольной промышленности для обогащения угля и в других отраслях народного хозяйства.

Из уровня техники известен пневмосепаратор сыпучих материалов, содержащий горизонтальную сепарационную камеру, оснащенную приемниками готовых фракций, и присоединенный к ней вертикальный трубопровод переменного поперечного сечения, сверху которого расположен бункер для сепарируемого материала. Со стороны бункера к вертикальному трубопроводу примыкает камера осадки, оснащенная отсасывающим вентилятором, перед которым установлена заслонка периодического действия, кинематически связанная с кулачковым механизмом ее поворота. При работе этого пневмосепаратора реализуют следующие последовательные операции: подачу сыпучего материала в зону сепарации, предварительного интенсивного расслоения указанного материала в вертикальном воздушном потоке переменной скорости на легкие и тяжелые частицы с одновременным выделением из них легких примесей и пыли, попадающих в камеру осадки, оснащенной заслонкой периодического действия и отсасывающим вентилятором. Остальные легкие и тяжелые частицы, находясь в вертикальном потоке, постепенно продвигаются к низу, где попадают под действие почти горизонтального сплошного воздушного потока, разделяющего указанные частицы в горизонтальной сепарационной камере на отдельные фракции, которые выводятся в приемники готовых фракций [см. а.с. СССР 1407587 по классу В07В 4/02, опубликованное 07.07.1988 года в Бюл 25].

При такой сепарации сыпучих материалов характерна высокая сложность процесса сепарации и низкое качество разделения материала на отдельные фракции, что обусловлено пульсирующим изменением параметров вертикального воздушного потока в трубопроводе и горизонтального воздушного потока в пневмокамере из-за периодичности подключения к трубопроводу отсасывающего вентилятора камеры осадки с помощью заслонки. При открытии заслонки давление указанных потоков воздуха снижается, что приводит к нестабильности процесса сепарации и ухудшает условия разделения материала на фракции. Низкое качество процесса сепарации объясняется тем, что на этапе расслоения легких и тяжелых частиц в вертикальном воздушном потоке возникает так называемый экранирующий эффект, при котором тяжелые частицы увлекают за собой более легкие, и вместе с ними проходят через горизонтальный пневмопоток в сепарационной камере и оказываются в несоответствующих для них фракционных сборниках. При этом конструкция известного пневмосепараторка не способна устранить влияние указанного явления, что подтверждает его несовершенство и является его недостатком. Кроме того, недостатком известного пневмосепаратора следует считать его высокую сложность из-за наличия дополнительной камеры осадки, к тому же оснащенной дополнительными приборами и вентилятором, значительные габаритные размеры, в частности, высота, из-за включение в конструкцию вертикального трубопровода, а также, высокое потребление энергии из-за наличия в конструкции двух вентиляторов, делающих процесс сепарации довольно энергозатратным и, из-за этого, - дорогостоящим.

Известно также устройство для сепарации сыпучей смеси в текучей среде, содержащее бункер с питателем, вентилятор, воздуховоды и сепарационную камеру, выполненную из диэлектрического материала в форме прямоугольной вертикальной трубы, оснащенной электродами, расположенными на ее внутренних противоположных стенках, и содержит систему воздушных патрубков, входящих во внутрь нее и оснащенных рассеивающими наконечниками и вентилями для регулирования скорости встречного потока воздуха в межэлектродном пространстве, а также соединенные между собой герметичными коническими сборниками, улавливающими фракции отсепарированного материала. При эксплуатации этого устройства осуществляют гравитационную подачу сыпучего материала с заданной скоростью в зону действия электрического поля и последующее разделение частиц материала в равномерном встречном восходящем воздушном потоке и выведение продуктов разделения, [см. пат. Российской Федерации 2262994 по классам В07В 4/02, В03С 7/12, опубликованный 27.10.2005 года в Бюл. 30].

Использование в известном техническом решении встречного восходящего воздушного потока обеспечивает достаточно тонкую и качественную сепарацию частиц сыпучих материалов. Однако недостатком такого процесса является то, что формирование данного воздушного потока является принудительным, следовательно, связано с необходимостью использования сложной системы его настройки. Для качественного разделения, в зависимости от конкретного состава сепарируемой смеси, надо одновременно отрегулировать скорость воздушного потока, напряженность электрического поля и объем подачи частиц из бункера. Ввиду отсутствия единой автоматической системы управления процессом, существенно повышаются энерго- и трудозатраты на эксплуатацию данной устройства. Кроме того, следует отметить, что функция разделения частиц в электрическом поле является абсолютно бесполезной, поскольку частицы сепарируемой смеси - диэлектрики. Основным же недостатком известного устройства является то, что оно имеет слишком сложную конструкцию, в которой присутствует большое количество взаимоувязанных деталей и узлов, часто мелких и высокотехнологичных, а также использование двух видов энергетических ресурсов для осуществления процесса сепарации (например, питатель бункера, регулирующий вентиль, блок питания вентилятора и т.д.).

Известным также является устройство для сепарации сыпучей смеси в текучей среде, содержащее бункер с вибролотком, установленный под ним генератор струй с расположенными друг под другом и под острым углом к вертикали плоскими соплами, высота поперечных сечений которых, шаг и угол установки, увеличиваются сверху к низу, при этом генератор связан с источником подачи воздуха под давлением и охвачен боковыми стенками, а под соплами расположены сборники фракций. С помощью этого устройства осуществляют сепарацию сыпучей смеси в текучей среде, включающую гравитационную подачу частиц, аэродинамическое монотонно растущее воздействие на них под острым углом к вертикали каскадом плоских струй и выведение готовых фракций, при этом воздействие каскадом плоских струй происходит в режиме свободного знакопеременного силового сканирования с ростом амплитуды и угла сканирования [см. пат. Украины 45881 по классу В07В 4/02 опубликованный 15.04.2002 года в Бюл. 4].

Результатом такой сепарации является низкое качество разделения сыпучей смеси на фракции, особенно частиц со значительной разницей по массе и по плотности. Данный недостаток заключается в следующем: знакопеременный и свободный режим работы каскада струй неотвратимо приводит к периодическому, нестабильному во времени и пространстве возникновению зон давления и разряжения с появлением прямых и обратных течений. В зоне обратных течений происходит втягивание частиц (особенно легких) в движение, обратное направлению основного потока, что приводит к частичному смешиванию уже разделенного материала. Нестабильность во времени этого явления, в конечном итоге, приводит к размыканию (разрыву) каскада струй в любом случайном месте, что приводит к срыву генерации, в результате чего кардинально снижается качество сепарации. Поэтому недостатком известного устройства является несовершенство генератора каскада струй, в частности, сопел, конструкция которых не может устранить появление обратных течений воздуха в сепарационной камере, что и приводит к снижению качества сепарации.

Наиболее близким по своей сущности и достигаемому эффекту, принимаемым за прототип, является устройство для сепарации сыпучей смеси в текучей среде, содержащее бункер с вибролотком для гравитационной подачи смеси в зону сепарации, под которым установлен струйный генератор, с расположенными одно под другим и под острым углом к вертикали соплами с жесткими стенками примыкающими к ним сверху по всей ширине, а также шаг и ширина расположения сопел увеличивается сверху к низу, и генератор связан с источником подачи воздуха под давлением и охвачен боковыми стенками, которые одновременно образуют сепарирующую камеру со сборниками фракций, расположенными под ней. Кроме того, размер ширины жесткой стенки составляет не менее три размеров высоты поперечного сечения сопла примыкания, а соотношение шага установки сопел к высоте поперечного сечения верхнего относительно к нему сопла составляет не менее четырех. Процессная и конструктивная сущность эксплуатации этого устройства заключается в следующем. Сначала осуществляют гравитационную подачу частиц, затем аэродинамическое монотонно растущее воздействие на них под острым углом к вертикали каскадом плоских струй и, далее, выведение готовых фракций. При этом перед аэродинамическим воздействием на частицы смеси, течение каждого струи переводят в режим развитой турбулентности путем расширения струй по вертикали до слияния их друг с другом со сбойной или близкой к ней формой течения и образования в начале каждого межструйного пространства всех смежных струй не менее двух циркуляционных зон, отличных по величине [см. Международную заявку WO 2010056220 по классам В07В 11/00, В07В 4/02, В07В 4/00, опубликованную 20.05.2010 года].

Основным недостатком известного устройства для сепарации сыпучей смеси в текучей среде является наличие в его конструкции плоскогоризонтальных сопел генератора. Известно, что сопло, как технологическое устройство, предназначено для разгонки жидкостей или газов до заданной скорости и придания потоку определенного направления. В результате использования в конструкции известного устройства плоско-горизонтальных сопел, каскад воздушных струй выходит слишком мощным и быстрым, поэтому зона развитой турбулентности сдвигается в середину сепарирующей камеры и имеет короткую ширину, поэтому в ней полное разделение смеси на фракции не успевает произойти полностью. Следовательно часть сыпучей смеси, сначала около сопел разгоняется сплошными струями до большой скорости и, потом частично насквозь проскакивает через зону развитой турбулентности, оставаясь неотсепарированной - их просто сносит мощными воздушными потоками, и они хаотично оседают в разных сборниках. Это приводит к не контролированному образованию смешанных фракций. Следовательно, наличие указанных сопел с жесткими стенками никоим образом не способствует повышению качества сепарации, даже, напротив, ухудшает, и неоправданно усложняет конструкцию сепаратора.

Следующим существенным недостатком известного устройства является то, что весь набор сопел с жесткими стенками генератора расположен в одной вертикальной плоскости. Учитывая тот факт, что жесткие стенки установлены под острым углом к вертикали, их шаг и угол увеличиваются сверху к низу, между вертикальной стенкой генератора и каждой из вышеуказанных прямоугольных жестких стенок образуются «карманы», куда попадают частицы сыпучей смеси, тяжелые примеси и т.д. Со временем это приводит к заполнению этими веществами указанных «карманов». Ввиду ощутимых размеров таких накоплений (ширина жестких стенок увеличивается сверху к низу), возникает необходимость в периодической остановке работы сепаратора и вычищать его, для того, чтобы избежать его перегрузки и ухудшения условий формирования каскада струй. Эта процедура является неудобной и достаточно длительной, поскольку устройство нужно разбирать, а также экономически неоправданной, потому что вынужденный «простой» негативно отражается на общей производительности устройства. Кроме того, в целом несовершенным является и конструкция самих сопел с жесткими стенками, которые достаточно сложно изготавливать и закреплять параллельно в генераторе.

Предложенное изобретение направлено на достижение технического результата, заключающегося в повышении производительности процесса воздушной сепарации сыпучей смеси в текучей среде, в упрощении конструкции устройства с одновременным повышением качества сепарации за счет получения более мощного режима турбулентности путем увеличения размеров зон развитой турбулентности за счет формирования дополнительных циркуляционных зон, способных индуцировать микровихри, и улучшения аэродинамических параметров устройства, за счет изменения конструкции генератора каскада струй.

Указанный технический результат достигается тем, что в в известном устройстве для реализации предложенного способа сепарации сыпучей смеси в текучей среде, содержащем бункер с вибролотком, установленный под ним генератор, с расположенными одна под другой и под острым углом к вертикали жесткими стенками, шаг и ширина расположения которых увеличивается сверху к низу, и связанный с источником подачи воздуха под давлением и охваченный боковыми стенками, а также сборники фракций, согласно предложения, конец каждой жесткой стенки по всей ее длине снабжен расположенной к ней под углом дополнительной стенкой, ширина которой меньше расстояния между смежной сверху жесткой стенкой, которые установлены с сдвигом по горизонтали, с образованием зазора относительно нижней жесткой стенки, и камеры поворота воздушного потока на входе в зазор, при этом камеры поворота и зазоры увеличиваются сверху к низу.

Предложенное техническое решение предусматривает сепарацию в более мощном, в сравнении с прототипом, турбулентном режиме, который характеризуется увеличенной общей зоной турбулизации, образованной благодаря делению одной из циркуляционных зон на две, почти последовательные, а также благодаря возникновению множества зон микровихрей. Технологически это обеспечивает резкое изменение направления воздушных струй при выходе их из генератора, а конструктивно - в результате образования в полости генератора камер поворота указанных струй перед их выходом наружу и формированием щелевых зазоров непосредственно для их прохождения. Достижение указанного технического результата стало возможным, прежде всего, благодаря комплексу аэродинамических усовершенствований устройства для сепарации. В предложенном устройстве для сепарации выходные отверстия генератора соединены с жесткими стенками, расположенными с сдвигом по горизонтали и, соответственно, оснащенные дополнительным стенками, расположенными под углом к ним таким образом, что позволяют сформировать вышеупомянутые камеры поворота (резкого изменения направления) воздушного потока, а также щелевые зазоры, для прохождения сформированных вследствие этого воздушных струй. При этом деление каждой верхней (смежной с выходящей струей) циркуляционной зоны происходит за счет отражения указанной струи от расположенной сверху под углом к траектории ее движения жесткой стенки и, соответственно, сталкивания ее с циркуляционной зоной, под воздействием чего последняя разделяется на два последовательных в направлении течения струи циркуляционные зоны, суммарная длина которых увеличивается и между ними возникает зона встречных течений, выполняющих функцию зоны индуцирования многочисленных микровихрей. Вследствие этого увеличивается общий размер, в частности ширина, зон турбулизации и они приближены к генератору, возрастает дальнобойность турбулентного течения, что позволяет в несколько раз повысить интенсивность процесса сепарации, утолщать слой сепарируемой смеси без риска ухудшения качества готового продукта. Наличие камер поворота также разрешает «внешнюю» проблему в конструкции сепаратора: благодаря взаимному размещению жестких стенок, смещенных по горизонтали, и дополнительных стенок, которые практически полностью (за исключением щелевых зазоров) закрывают межструйные пространства, на внешних рабочих поверхностях сепаратора не накапливаются сепарированные частицы. Кроме того, отказ от использования сопел существенно упрощает конструкцию предложенного устройства для сепарации, а также устраняет возможность смешивания разных фракций - главным образом, благодаря отсутствию ускоренного прямолинейно направленного воздушного потока из сопла, - и обеспечивает стабильность турбулентного режима.

Таким образом, вся совокупность существенных признаков предложенного технического решения относительно предложенного устройства для сепарации сыпучей смеси в текучей среде обеспечивает достижение технического результата.

Дальнейшая сущность полезной модели поясняется иллюстративным материалом, на котором изображено следующее: фиг.1 - схема устройства для осуществления заявленного способа; фиг.2 - сечение генератора для пояснения процесса формирования циркуляционных зон (черными окружностями показаны зоны образования микровихрей). На фигурах 1 и 2 стрелками показаны направления движения воздушных потоков. На фиг.2 штрихпунктирной линией показано изменение направления течения струи.

Устройство для осуществления предложенного способа сепарации сыпучей смеси в текучей среде состоит из бункера 1 с вибролотком 2 для гравитационной подачи частиц в зону сепарации. Под вибролотком 2 установлен струйный генератор 3, представляющий собой замкнутый объем с набором выходных щелевых отверстий 4 преимущественно прямоугольного сечения. Высота сечения выходных щелевых отверстий 4 и интервал между ними увеличиваются сверху донизу. К краям выходных щелевых отверстий 4 под углом к вертикали и с сдвигом по горизонтали присоединены прямоугольные жесткие стенки 5. Концы жестких стенок 5 снабжены дополнительными стенками 6, которые расположены под углом к ним и совместно с ними образуют камеры поворота воздушного потока 7 и щелевые отверстия 4 для прохождения сформированной воздушной струи. Размеры камер поворота 7 и щелевых отверстий 4, соответственно, увеличиваются сверху донизу. К генератору 3 со стороны щелевых отверстий 4 прилегают сборники фракций 8. Генератор 3 связанный с источником подачи воздуха под давлением Р, а его боковые края охвачены боковыми стенками 9.

Смесь, подлежащая сепарации, из бункера 1 с помощью вибролотка 2 гравитационно подают в зону сепарацию. На частицы указанной смеси, находящихся в свободном падении, воздействуют под острым углом к вертикали каскадом струй (показаны пунктирными кривыми линиями) в режиме развитой глубокой турбулентности, которая обеспечивается сбойным течением струй и функционированием циркуляционных зон. Указанные струи формируют из генерируемых воздушных потоков, предварительно изменяя направление движения последних с помощью камер поворота 7 и выводя сформированные струи через щелевые отверстия 4. При выходе из щелевого отверстия 4 каждую струю вертикально сжимают, в результате чего достигается ее сталкивание с ближайшей циркуляционной зоной и, соответственно, деление последней на две последовательных в направления течения струи циркуляционные зоны с образованием зоны встречных течений - зоны индуцирования многочисленных микровихрей. После прохождения частицами смеси каскада струй и зоны развитой турбулентности осуществляют вывод готовых фракций.

В полости генератора 3 под действием источника подачи воздуха возникает воздушный поток. При попадании его в камеры поворота 7 формируются воздушные струи с резко измененным направлением движения, которые выходят сквозь щелевые отверстия 4. Сыпучая смесь из бункера 1 с помощью вибролотка 2 под действием сил гравитации проходит сквозь образовавшийся каскад струй, в процессе чего происходит очистка смеси от посторонних примесей и разделения ее частиц на фракции, после чего разделенные частицы опускаются в соответствующие сборники фракций 8.

Существенное отличие предложенного устройства для сепарации сыпучей смеси в текучей среде, от других известных решений в данной отрасли знаний заключается в образовании в зоне турбулизации, в результате резкого изменения направления воздушного струе, дополнительной циркуляционной зоны, способной, в свою очередь, индуцировать зоны микровихрей и именно так увеличивать мощность и повышать стабильность турбулентного режима работы каскада воздушных струй. Указанное отличие обеспечивает высокое качество процесса сепарации и, одновременно, существенное упрощение конструкции устройства. Ни одно из известных устройств для сепарации сыпучей смеси в текучей среде не может одновременно обладать всеми перечисленными свойствами, поскольку вообще не предусматривают механического воздействия на направление движения воздушных струй, увеличения зоны турбулизации, в частности, путем образования дополнительной циркуляционной зоны и автоматического возникновения зон индуцирования микровихрей.

Таким образом, предложенные в данной полезной модели конструкция устройства для сепарации сыпучей смеси в текучей среде приводит к качественно новому техническому результату, в сравнении с известными аналогами.

Предложенное устройство не содержат в своем составе никаких элементов или узлов, которые невозможно было бы воспроизвести на современном этапе развития науки и техники, в частности, при производстве воздушных сепараторов, и, следовательно, считается таковым, что отвечают критерию «промышленная применимость».

В известных источниках научно-технической и другой информации не обнаружено ни одного устройства для сепарации сыпучей смеси в текучей среде с указанной в предложении совокупностью существенных признаков, поэтому предложенное техническое решение считается таковым, что отвечает критерию «новизна».

Сравнительный анализ предложенной полезной модели с известным техническим решением, взятым за прототип, показал, что резкое изменение направления движения воздушных струй во время формирования их каскада приводит к появлению новых технических преимуществ, в частности таких:

- увеличение количества циркуляционных зон без риска срыва генерации и разрушения сбойной формы течения струй за счет деления одной из функционирующих зон на две под воздействием той же струи с измененной траекторией движения;

- возникновение по этой же причине дополнительных аэродинамических эффектов в виде зон микровихрей, способных дополнительно повысить мощность и размеры турбулентного потока;

- избежание возможности смешивания обработанных частиц разных фракций, а также упрощение конструкции устройства, за счет отсутствия сопел с жесткими стенками;

- упрощение технологии сепарации по этой же причине;

- существенное улучшение аэродинамических параметров устройства и автоматическое устранение проблемы накопления частиц на его внешних рабочих поверхностях за счет наличия камер поворота.

Экономический эффект от внедрения полезной модели в производство, в сравнении с использованием прототипа, получают за счет увеличения выхода качественного продукта и снижения стоимости устройства.

После описания предложенного устройства для сепарации сыпучей смеси в текучей среде, специалистам в данной отрасли знаний должно быть очевидным, что все вышеописанное является лишь иллюстративным, а не ограничительным, будучи представленным данным примером. Многочисленные возможные варианты реализации предложенного устройства могут изменяться в зависимости от характеристик исходного сыпучего материала, области применения и желаемых объемов производства, и, понятно, находятся в пределах объема одного из обычных и естественных подходов в данной области знаний и рассматриваются таковыми, что находятся в пределах объема предложенного технического решения.

Квинтэссенцией предложенного технического решения является то, что в процессе сепарации во время образования циркуляционных зон осуществляют вертикальное сжатие струй и деление на две верхней циркуляционной зоны с образованием дополнительной циркуляционной зоны, индуцирующей зоны микровихрей, при этом выходные отверстия генератора связаны с жесткими стенками разной ширины, установленных под острым углом с сдвигом по горизонтали, а конец каждой жесткой стенки за всей ее длиной снабжен расположенной к ней под углом дополнительной стенкой с образованием щелевого зазора для прохождения воздушного потока и камеры поворота воздушного потока на входе в указанный зазор, к тому же размеры образованных зазоров и камер поворота, соответственно, увеличиваются сверху донизу, что в совокупности позволяет существенно повысить интенсивность сепарации с повышением качества и без привлечения каких-либо дополнительных ресурсов энергии, и именно это обстоятельство позволило приобрести предложенному устройству вышеперечисленные и другие преимущества. Использование лишь отдельных элементов предложенных конструктивных усовершенствований, естественно, ограничивает спектр преимуществ, перечисленных выше, и не могут считаться новыми техническими решениями в данной области знаний, поскольку иное, подобно описанному устройству, уже не требует никакого творческого подхода от конструкторов и инженеров, и не может считаться результатами их творческой деятельности или новыми объектами интеллектуальной собственности, соответствующих к защите охранными документами.

Устройство для сепарации сыпучей смеси в текучей среде, содержащее бункер с вибролотком, установленный под ним генератор с расположенными одна под другой и под острым углом к вертикали жесткими стенками, шаг и ширина расположения которых увеличивается сверху донизу, связанный с источником подачи воздуха под давлением и охваченный боковыми стенками, а также сборники фракций, отличающееся тем, что конец каждой жесткой стенки по всей ее длине снабжен расположенной к ней под углом дополнительной стенкой, ширина которой меньше расстояния между смежными сверху жесткими стенками, которые расположены со сдвигом по горизонтали, с образованием зазора относительно нижней жесткой стенки и камеры поворота воздушного потока на входе в зазор, при этом камеры поворота и зазоры увеличиваются сверху к низу.



 

Наверх