Конденсатор

 

Полезная модель относится к электротехнике, а именно к конденсаторам с высокими удельными параметрами, которые в конструктивных сочетаниях с другими электрическими элементами могут быть использованы в качестве источников электрической энергии. Технический результат, заключающийся в улучшении технических и эксплуатационных характеристик, достигается тем, что на поверхность одного из электродов (1) конденсатора, обращенную ко второму электроду (2), нанесен путем напыления слой из материала (3), в который входят естественные радионуклиды или естественные частицы с электретными свойствами. В качестве диэлектрической прокладки между электродами использована электроизолирующая (непроводящая электрический ток) оксидная пленка (4), образовавшаяся из материала (3), нанесенного напылением, и элемент (5) из тугоплавкого материала, размещенный между электроизолирующей оксидной пленкой (4) и вторым электродом (2). 6 з.п.ф-лы, 2 илл.

Область техники

Полезная модель относится к электротехнике, а именно к конденсаторам с высокими удельными параметрами, которые в конструктивных сочетаниях с другими электрическими элементами могут быть использованы в качестве источников электрической энергии.

Уровень техники

Известны конструкции конденсаторов с двойным электрическим слоем (двухслойные конденсаторы), в частности, наиболее мощные из них, например, с жидким электролитом и поляризуемыми электродами с нанесенными на них покрытиями, выполненными из разнообразных материалов (RU 99897 U1, 27.11.2010; RU 98846 U1, 27.10.2010; RU 97861 U1, 20.09.2010; RU 2262148 C1, 10.10.2005).

Конденсаторы, которые используют такие электроды, могут реализовать только процесс накопления электрического заряда в двойном электрическом слое на поверхности контакта электрода и электролита. Применение известных материалов для таких электродов в определенной мере влияет только на величину указанного электрического заряда, что ограничивает область их применения как достаточно мощных источников питания.

Известен конденсатор (прототип), который реализует процесс накопления электрического заряда в двойном электрическом слое на поверхности контакта электрода и электролита, нашедший применение в качестве источника питания в полупроводниковых запоминающих устройствах (RU 2041517 C1, 09.08.1995). Известный конденсатор содержит два электрода из материала, изготовленного из углеродных волокон, разделенных ионопроводимым сепаратором, пропитанных органическим электролитом и имеющими на внешней поверхности слой металла, нанесенный плазменным напылением и неразъемносоединенный с обкладками, которые охватывают электроды, выполненные из металла, инертного к электролиту, и разделенные по периметру диэлектрической прокладкой.

Однако использование его как источника электрической энергии, ограничено, как указано выше, процессом накопления электрического заряда в двойном электрическом слое на поверхности контакта электрода и электролита, который ограничивает область его применения только в качестве источника электрической энергии для маломощных полупроводниковых устройств.

Раскрытие полезной модели

Задача полезной модели состояла в разработке конденсатора с высокими техническими и эксплуатационными характеристиками, главными показателями которых в данном случае являются хорошие удельные параметры, определяемые величиной энергии, отдаваемой в разряде на единицу массы и на единицу объема конденсатора, увеличение времени работы конденсатора как источника электрической энергии, стабильность параметров электропитания, высокая механическая прочность и надежность. Высокие технические и эксплуатационные характеристики предлагаемого конденсатора обусловлены новой совокупностью конструктивных элементов, их взаимного расположения и связей, свойствами материалов, из которых изготовлены элементы, и появлением новых технических эффектов и процессов, возникающих в конденсаторе при его работе.

Таким образом, технический результат заключается в повышении технических и эксплуатационных характеристик предлагаемого конденсатора.

Указанный технический результат достигается тем, что в конденсаторе, содержащем два пластинчатых электрода, выполненных из электропроводного материала и разделенных диэлектрической прокладкой, согласно полезной модели, на поверхность одного из электродов, обращенную ко второму электроду, нанесен путем напыления слой из материала, в который входят естественные радионуклиды или естественные частицы с электретными свойствами. В качестве диэлектрической прокладки между электродами использована электроизолирующая оксидная пленка, образовавшаяся из материала, нанесенного напылением, и по меньшей мере один элемент из тугоплавкого материала, размещенный между электроизолирующей оксидной пленкой и вторым электродом.

Кроме того, слой материала, нанесенного напылением, может быть выполнен в виде отдельных, не соединенных между собой пятен.

Предусмотрено, что слой материала, нанесенного напылением, может быть выполнен способом детонационного напыления.

Также предусмотрено, что слой материала, нанесенного напылением, может быть выполнен способом напыления с использованием дугового разряда.

Наряду с этим, сформированный между электродами двойной конденсаторный электрический слой может иметь емкость в пределах 1-100 миллифарад.

Рекомендуется, чтобы толщина слоя материала, нанесенного напылением, находилась в пределах 10-150 мкм.

Предусмотрено, что электроизолирующая оксидная пленка может быть образована путем обработки слоя материала, нанесенного напылением, пламенем пропан-бутановой газовой горелки.

Краткое описание фигур чертежей

На фиг.1 показан общий вид конденсатора в разрезе.

На фиг.2 показана схема подключения источника электропитания к столбику последовательно соединенных конденсаторов.

Осуществление полезной модели

Конденсатор состоит из двух пластинчатых электродов (1, 2), выполненных из электропроводного материала и разделенных диэлектрической прокладкой (фиг.1). На поверхность одного из электродов (1), обращенную ко второму электроду (2), нанесен путем напыления слой из материала (3), в который входят естественные радионуклиды или естественные частицы с электретными свойствами. В качестве диэлектрической прокладки между электродами использована электроизолирующая (непроводящая электрический ток) оксидная пленка (4), образовавшаяся из материала (3), нанесенного напылением, и элемент (5) из тугоплавкого материала, размещенный между электроизолирующей оксидной пленкой (4) и вторым электродом (2). Слой материала (3), нанесенного напылением, может быть выполнен в виде отдельных, не соединенных между собой пятен. Предусмотрено, что слой материала, нанесенного напылением, может быть выполнен способом детонационного напыления или способом напыления с использованием дугового разряда. Сформированный между электродами двойной конденсаторный электрический слой имеет емкость в пределах 1-100 миллифарад. Рекомендуется, чтобы толщина слоя материала, нанесенного напылением, находилась в пределах 10-150 мкм. Электроизолирующая оксидная пленка может быть образована путем обработки слоя материала, нанесенного напылением, пламенем пропан-бутановой газовой горелки. Электроды (1, 2) конденсатора или концы электродов столбика последовательно соединенных конденсаторов (6) подключены к источнику электропитания, в частности, к трансформатору (7) (фиг.2).

Для изготовления электродов конденсатора применялись металлические диски (в примерах 1-3 из стали НХС 20, в примерах 4-8 из стали НХС 18). На поверхность диска (1), обращенного в конденсаторе к диску (2), нанесен путем напыления слой материала (3) из измельченного минерала, в который входят радионуклиды или естественные частицы с электретными свойствами (например, полевой шпат), указанные в Таблице. Ради упрощения нанесения радионуклидов или естественных частиц с электретными свойствами на поверхность диска (электрода), примененный в примерах (см. Таблицу) базовый материал для пленочного покрытия может включать композитный тонкодисперсный порошок, который состоит из полнокристаллических горных пород с включением в них в равных долях (в примерах 1-3 Таблицы) силицидов, карбидов (в примерах 4-6) диабаз, норит, базальт с мелкокристаллической структурой (в примерах 7 и 8) кварц, сиенит, лабрадорит, и указанных в Таблице радионуклидов или электретов. В примерах 1-3 слой материала наносили детонационным способом, в примерах 4-6 способом электроплазменного напыления, а в примерах 7 и 8 способом с использованием дугового разряда. Напыление 3 в представленных примерах формируют в виде отдельных пятен (фиг.1).

Электроизолирующую (непроводящая электрический ток) оксидную пленку (4), создавали в примерах 4-8 методом термического закаливания электрода (1) с напылением в муфельной печи, а в примерах 1-3 методом обработки огнем пропан-бутановой горелки с использованием кислорода. В результате указанной обработки кислород соединяется с веществами, которые входят в напыляемый материал и материал подложки, и на поверхности образуется закись железа, окись железа, окись магния, двуокись титана и др. непроводящие соединения.

Конденсатор работает следующим образом. При подаче напряжения от источника электрического тока через электроклеммы (8) на пластинчатые электроды (1, 2) конденсатора электроемкость периодически разряжается и формируется снова. При этом ионизируется зона двойного конденсаторного электрического слоя, создается разряд и возникает газоразрядная плазма, а после развития плазменного шнура в зоне элемента (5) из тугоплавкого материала он, в указанных условиях и в указанной зоне, благодаря в том числе и разогреванию электродов и элемента (5), становится стабильным.

Процесс токопереноса в плазменных зонах, в результате превышения мощности плазменного шнура над расходами электроэнергии от ее источника используется с помощью употребляемого в схеме электропитания трансформатора. Температуру в зоне формирования плазменных шнуров в примерах измеряли пирометром «Луч-КХ2» («Проминь-КХ2») производства завода «Львовприбор», изготавливаемого в модификации для интервала 1500-6000°С. Загрязнения зоны формирования плазменного шнура оценивали с помощью измерителя мощности дозы ИМД-ИР(С).

Таким образом, использование новых свойств конденсатора приводит к изменению процессов между электродами конденсатора и появлению новых технических эффектов в конденсаторе. Конденсатор с такими конструктивными элементами характеризуется электроемкостью, которая под действием внешнего источника заряжается, а благодаря пленочному напылению на электроде, в котором применен материал, в который входят радионуклиды или электреты, межэлектродный конденсаторный промежуток конденсатора периодически разряжается и заряд на электродах формируется снова. В период разряда между электродами конденсатора возникает плазменный шнур, который сопровождается плазменным разогреванием. В зоне плазменного разогревания происходит интенсивное испарение вещества, возникают плазмохимические реакции на парах, окружающих плазменный шнур вещества и газа, и ионизация указанных веществ, в результате чего плазменный шнур увеличивается и, как следствие, процесс токопереноса между электродами, вызванный плазменным шнуром, усиливается. Увеличение токопереноса между электродами расширяет область применения конденсатора как источника питания внешних устройств и существенно повышает длительность процесса электропитания.

Таблица
ПримерыДиаметр дисковТолщина дичковТолщина слоя напыления Расстояние между дисками ЕмкостьНапылениеТермостойкий элементНапряжение Сила токаТемператураДоза ионизирующего излученияПревышение полученной энергии над затраченной
мм мм мкм мм мФ Материал Материал °Смбэр/
ч%
1.360
4015 501 100RbCl Кремнийоксиншрид 502500,2 35%
0
2.355
2615 106 70RbOH Титаноксинитрид 241600,1 37%
0
3.360
4515 15098 1CsOH Силицид титана221200,3 49%
0
4. Полевой Шпат365
2515 705 65Кремнийокеинитрнд18 1000,2 55%
0
5.360
2615 306 70УранинитТитаноксинитрид26 1600,1 53%
0
6.смесь
RbCl,
RbOH,
CsOH,
355
4015 701 100полевойСилицид титана 402000,2 60%
0
шпат,
уранинит,
настуран,
скупит
7.360
2615 1506 45НастуранКремнийоксинитрид20 1300,2558%
0
8.360
4515 1099 1Скупит Титаноксинитрид 502400,1 51%
0

1. Конденсатор, содержащий два пластинчатых электрода, выполненных из электропроводного материала и разделенных диэлектрической прокладкой, отличающийся тем, что на поверхность одного из электродов, обращенную ко второму электроду, нанесен путем напыления слой из материала, в который входят естественные радионуклиды или естественные частицы с электретными свойствами, а в качестве диэлектрической прокладки между электродами использована электроизолирующая оксидная пленка, образовавшаяся из материала, нанесенного напылением, и по меньшей мере один элемент из тугоплавкого материала, размещенный между электроизолирующей оксидной пленкой и вторым электродом.

2. Конденсатор по п.1, отличающийся тем, что слой материала, нанесенного напылением, выполнен в виде отдельных, не соединенных между собой пятен.

3. Конденсатор по п.1, отличающийся тем, что слой материала, нанесенного напылением, выполнен способом детонационного напыления.

4. Конденсатор по п.1, отличающийся тем, что слой материала, нанесенного напылением, выполнен способом напыления с использованием дугового разряда.

5. Конденсатор по п.1, отличающийся тем, что сформированный между электродами двойной конденсаторный электрический слой имеет емкость в пределах 1-100 мФ.

6. Конденсатор по п.1, отличающийся тем, что толщина слоя материала, нанесенного напылением, находится в пределах 10-150 мкм.

7. Конденсатор по п.1, отличающийся тем, что электроизолирующая оксидная пленка образована путем обработки слоя материала, нанесенного напылением, пламенем пропан-бутановой газовой горелки.



 

Похожие патенты:

Полезная модель относится к средствам контроля радиационных параметров окружающей среды, радиоэкологического мониторинга локальных и глобальных регионов, и может быть применена для своевременного оповещения населения и специализированных подразделений, в частности при аварийных ситуациях на радиационно опасных объектах, оценке доз облучения населения

Изобретение относится к области изготовления изделий из полимерных материалов и может быть использовано при модификации полимеров для последующего изготовления изделий из полимерных материалов в производстве нагревостойких нефтепогружных кабелей, труб, термоусаживающихся пленок и трубок, термоусаживаемых изделий

Полезная модель относится к электрическим устройствам для преобразования энергии постоянного тока на входе в энергию постоянного тока на выходе и предназначена для использования в системах энергоснабжения для преобразования входной энергии постоянного тока в выходную энергию требуемого вида, а также управление или регулирование таких устройств
Наверх