Автономный согласованный резонансный инвертор

 

Полезная модель относится к преобразовательной технике и может быть использована в источниках питания для индукционных нагревателей. Полезная модель повышает надежность работы инвертора. Автономный согласованный резонансный инвертор содержит подключенный к входным выводам инвертора через дроссели фильтра 1, 2 однофазный мост на четырех управляемых вентилях 3-6 с встречно-параллельными диодами 7-10, зашунтированный конденсатором фильтра 11, выходные выводы переменного тока однофазного моста соединены с выходными выводами инвертора через коммутирующий дроссель 12, выходные выводы инвертора зашунтированы компенсирующим конденсатором 13. Нагрузка 14 подключена к выходным выводам инвертора. 1 илл.

Полезная модель относится к преобразовательной технике и может быть использована при проектировании источников питания для индукционных нагревателей и других электротехнологических нагрузок. Полезная модель повышает надежность работы автономного согласованного резонансного инвертора.

Известен автономный инвертор тока с квазирезонансной коммутацией, содержащий подключенный к входным выводам инвертора тока через дроссели фильтра однофазный мост на управляемых вентилях, зашунтированный встречным диодом, выходные выводы переменного тока однофазного моста соединены с выходным выводам инвертора через коммутирующий дроссель, выходные выводы инвертора зашунтированы компенсирующим конденсатором (А.с. 1683150 СССР, МКИ Н 02 М5\45. Преобразователь частоты \ Силкин Е.М. - Заявл. 03.03.89, Опубл. 07.10.91, Б.И. №37).

Недостатком автономного инвертора тока с квазирезонансной коммутацией является низкая надежность работы. Это обусловлено высокими уровнями перенапряжений на управляемых вентилях, что может привести к выходу их из строя, а также высокими уровнями электромагнитных помех, возникающих при выключении встречного диода, что может вызывать сбои в системе управления инвертора.

Известен автономный инвертор тока с квазирезонансной коммутацией, содержащий подключенный к входным выводам инвертора тока через дроссель фильтра однофазный мост на управляемых вентилях с встречно-параллельными диодами, выходные выводы переменного тока однофазного моста соединены с выходными выводами инвертора через коммутирующий дроссель, выходные выводы инвертора тока зашунтированы компенсирующим конденсатором (А.с. 1742961 СССР, МКИ Н 02 М 5\45. Преобразователь частоты \ Силкин Е.М. - Заявл. 02.08.89, Опубл. 23.06.92, Б.И. №23).

Недостатком автономного инвертора тока с квазирезонансной коммутацией является низкая надежность работы. Это обусловлено высокими уровнями перенапряжений на управляемых вентилях, что может привести к выходу их из строя, а также высокими уровнями электромагнитных помех, возникающих при выключении встречно-параллельных диодов, что может вызывать сбои в системе управления инвертора.

Известен автономный инвертор тока с квазирезонансной коммутацией, содержащий подключенный к входным выводам инвертора через дроссели фильтра однофазный мост на управляемых вентилях с встречно-параллельными диодами, выходные выводы переменного тока однофазного моста соединены с выходными выводами инвертора через последовательно соединенные коммутирующий дроссель и коммутирующий конденсатор (Тиристорные преобразователи частоты / А.К.Белкин, Т.П.Костюкова, Л.Э.Рогинская и др. - М.: Энергоатомиздат, 2000. - С.88).

Недостатком автономного инвертора тока с квазирезонансной коммутацией является низкая надежность работы. Это обусловлено высокими уровнями токов и перенапряжений на управляемых вентилях, что может привести к выходу их из строя, а также высокими уровнями электромагнитных помех, возникающих при выключении встречно-параллельных диодов, что может вызывать сбои в системе управления инвертора.

Известен автономный согласованный резонансный инвертор, содержащий подключенный к входным выводам инвертора однофазный мост на управляемых вентилях с встречно-параллельными диодами, зашунтированный конденсатором фильтра, выходные выводы переменного тока однофазного моста соединены с выходными выводами инвертора через коммутирующий дроссель и коммутирующий конденсатор (Патанов Д.А. Общие проблемы снижения коммутационных потерь в инверторах напряжения // Схемотехника. - 2001. - №5. - С.48).

Указанный автономный согласованный резонансный инвертор является наиболее

близким по технической сущности к полезной модели и выбран в качестве прототипа.

Недостатком автономного согласованного резонансного инвертора является низкая надежность работы. Это обусловлено высокими уровнями токов управляемых вентилей и высокими уровнями электромагнитных помех, что может приводить к выходу управляемых вентилей из строя из-за перегрева структуры и сбоям в системе управления инвертора, а также высокими уровнями коммутационных перенапряжений на управляемых вентилях из-за резкого обрыва прямого тока при выключении, что может вызвать пробой управляемых вентилей и встречно-параллельных диодов.

Полезная модель направлена на решение задачи повышения надежности работы автономного согласованного резонансного инвертора, что является целью полезной модели.

Указанная цель достигается тем, что в автономном согласованном резонансном инверторе, содержащем подключенный к входным выводам инвертора через дроссели фильтра однофазный мост на управляемых вентилях с встречно-параллельными диодами, зашунтированный конденсатором фильтра, выходные выводы переменного тока однофазного моста соединены с выходными выводами инвертора через коммутирующий дроссель, выходные выводы инвертора зашунтированы компенсирующим конденсатором.

Существенным отличием, характеризующим полезную модель, является повышение надежности работы автономного согласованного резонансного инвертора, что достигается снижением уровней токов и перенапряжений на управляемых вентилях и встречно-параллельных диодах, снижением уровней электромагнитных помех, исключением режимов перегрева структуры управляемых вентилей и сбоев в системе управления инвертора.

Повышение надежности работы инвертора тока является полученным техническим результатом, обусловленным новыми элементами в схеме инвертора тока, порядком их включения и новыми связями, то есть отличительными признаками полезной модели. Таким образом, отличительные признаки заявляемого автономного согласованного

резонансного инвертора являются существенными.

На рисунке приведена схема автономного согласованного резонансного инвертора.

Автономный согласованный резонансный инвертор содержит подключенный к входным выводам инвертора через дроссели фильтра 1, 2 однофазный мост на четырех управляемых вентилях 3-6 с встречно-параллельными диодами 7-10, зашунтированный конденсатором фильтра 11, выходные выводы переменного тока однофазного моста соединены с выходными выводами инвертора через коммутирующий дроссель 12, выходные выводы инвертора зашунтированы компенсирующим конденсатором 13. Нагрузка 14 подключена к выходным выводам инвертора.

Автономный согласованный резонансный инвертор в установившемся режиме работает следующим образом. Импульсы управления на управляемые вентили 3, 6 и 4, 5 поступают поочередно с частотой, равной частоте выходного сигнала инвертора. Значения индуктивностей дросселей фильтра 1, 2 выбраны достаточными для качественной фильтрации тока и напряжения на входе однофазного моста. Компенсирующий конденсатор 13 обеспечивает параллельную компенсацию реактивной мощности индукционного нагревателя (нагрузки) 14 и последовательную компенсацию реактивной мощности коммутирующего дросселя 12. Коммутирующий дроссель 12 может выполняться в виде самостоятельного элемента или представлять собой индуктивность нагрузки (части нагрузки) и (или) соединительных отводящих шин (кабелей).

Полный цикл (период) выходного сигнала автономного согласованного резонансного инвертора состоит из двух равных временных интервалов (полупериодов), соответствующих различным сочетаниям включенного и выключенного состояния управляемых вентилей 3-6 и встречно-параллельных диодов 7-10. В каждом полупериоде, в общем случае, можно выделить три различных по характеру электромагнитных процессов временных интервала (одновременной работы двух управляемых вентилей однофазного

моста, двух смежных встречно-параллельных диодов, а также паузы в работе управляемых вентилей и встречно-параллельных диодов). Основной интервал соответствует интервалу одновременной проводимости двух управляемых вентилей однофазного моста 3, 6 или 4, 5. Два других интервала целесообразно устанавливать малой длительности выбором параметров элементов, что обеспечивает высокие энергетические показатели устройства. На интервале одновременной проводимости двух смежных встречно-параллельных диодов к выключившимся управляемым вентилям прикладывается небольшое обратное (отрицательное) напряжение, равное падению напряжения на встречно-параллельном диоде, и управляемые вентили могут восстанавливать свои управляющие свойства (при использовании однооперационных вентилей). В этом случае длительность второго интервала устанавливается исходя из требуемого времени выключения используемых управляемых вентилей 3-6.

В момент включения (начало полупериода), например, управляемых вентилей 3, 6 напряжение на компенсирующем конденсаторе 13 имеет условно отрицательную полярность (положительный потенциал на правой по схеме обкладке компенсирующего конденсатора 13). Напряжение на компенсирующем конденсаторе 13 изменяется по колебательному закону. Уровень напряжения на компенсирующем конденсаторе 13 в момент включения управляемых вентилей 3, 6 ниже уровня амплитудного значения напряжения. Включение управляемых вентилей 3, 6 осуществляется с опережением относительно момента перехода мгновенного значения напряжения на компенсирующем конденсаторе 13 относительно нулевого уровня. Ток через параллельный нагрузочный контур, образованный индукционным нагревателем 14 и компенсирующим конденсатором 13, начинает протекать от конденсатора фильтра 11 автономного согласованного резонансного инвертора по цепи: 11-3-12-(13, 14)-6-11. Конденсатор фильтра 11 имеет достаточную емкость для качественного сглаживания напряжения на входе однофазного моста. Заряд

конденсатора фильтра 11 осуществляется от источника питания автономного согласованного резонансного инвертора по цепи: +-1-11-2--. Компенсирующий конденсатор 13 разряжается и колебательно перезаряжается до напряжения условно положительной полярности (положительный потенциал на левой по схеме обкладке). Параметры цепи 11-3-12-(13, 14)-6-11 и угол опережения выбираются такими, чтобы электромагнитные процессы в ней также имели колебательный характер. То есть, указанная цепь представляют собой последовательный колебательный контур, образованный коммутирующим дросселем 12 и нескомпенсированной частью емкости компенсирующего конденсатора 13. Ток управляемых вентилей 3, 6 вначале возрастает, а затем спадает по квазиколебательному закону. В момент равенства тока управляемых вентилей 3, 6 нулю они выключаются. В момент выключения управляемых вентилей 3, 6 заканчивается первый интервал полупериода (одновременной проводимости управляемых вентилей однофазного моста). После выключения управляемых вентилей 3, 6 включаются встречно-параллельные диоды 7, 10. Возникает колебательный ток разряда компенсирующего конденсатора 13 по цепи: 13-12-7-11-10-13. Одновременно компенсирующий конденсатор 13 продолжает перезаряжаться через нагрузку 14. На интервале одновременной проводимости двух смежных встречно-параллельных диодов 7, 10 к выключившимся управляемым вентилям 3, 6 прикладывается небольшое обратное (отрицательное) напряжение, равное падению напряжения на соответствующем встречно-параллельном диоде 7, 10, и управляемые вентили 3, 6 могут восстанавливать свои управляющие свойства (при использовании однооперационных вентилей). К моменту выключения встречно-параллельных диодов 7, 10 заканчивается второй интервал полупериода. Далее через интервал паузы (третий интервал полупериода) с опережением относительно момента перехода мгновенного значения напряжения на компенсирующем конденсаторе 13 через нуль включаются управляемые вентили 4, 5. Компенсирующий конденсатор 13 в указанный момент времени заряжен с

условно положительной полярностью напряжения и колебательно перезаряжается до напряжения противоположной полярности (отрицательный потенциал на левой по схеме обкладке). С момента включения управляемых вентилей 4, 5 заканчивается первый полупериод в работе инвертора. Во втором полупериоде, при работе управляемых вентилей 4, 5 и встречно-параллельных диодов 8, 9, электромагнитные процессы в автономном согласованном резонансном инверторе протекают аналогично, но токи через нагрузочный контур (13, 14) с индукционным нагревателем 14 на временных интервалах второго полупериода имеют противоположное направление. По окончании второго полупериода снова включается управляемые вентили 3, 6. Далее электромагнитные процессы в инверторе (новый период выходного сигнала) полностью повторяются.

Управляемые вентили 3-6 при реализации автономного согласованного резонансного инвертора могут быть выполнены как однооперационными симметричными или не имеющими обратной блокирующей способности (тиристоры различных типов, реверсивно-включаемые динисторы, газоразрядные вентили), так и двухоперационными, то есть полностью управляемыми симметричными или несимметричными (запираемые тиристоры, транзисторы различных типов, комбинированные ключи). Двухоперационные вентили также могут быть включены только в два плеча или в одну из групп (анодную или катодную) однофазного моста инвертора. При этом в двух других плечах или другой группе однофазного моста могут быть использованы однооперационные вентили.

По сравнению с прототипом существенно повышается надежность работы автономного согласованного резонансного инвертора. Это достигается снижением величин токов управляемых вентилей и встречно-параллельных диодов за счет использования параллельной компенсации реактивности индукционного нагревателя (нагрузки), уровней перенапряжений на управляемых вентилях, возникающих при их выключении, уровней электромагнитных помех, возникающих при выключении управляемых вентилей и

встречно-параллельных диодов, обеспечением симметричного ограничения тока источника питания инвертора при аварийных замыканиях выходных выводов инвертора на корпус нагрузки за счет дросселей фильтра. Повышается устойчивость работы автономного согласованного резонансного инвертора и уменьшается вероятность срывов инвертирования при работе на изменяющуюся в широких пределах электротехнологическую нагрузку (индукционный нагреватель), а также сбоев в системе управления инвертора.

Повышение надежности автономного согласованного резонансного инвертора оценивается по времени наработки устройства на отказ. Согласно экспериментальных исследований и экспертных оценок время наработки на отказ заявляемого инвертора может быть увеличено на 30-40%.

По сравнению с прототипом дополнительно повышается коэффициент полезного действия инвертора за счет уменьшения коммутационных потерь энергии в управляемых вентилях и встречно-параллельных диодах (снижение уровней коммутационных перенапряжений, начальных скоростей нарастания и скоростей спада тока при включениях и выключениях управляемых вентилей и встречно-параллельных диодов, рекуперация части энергии перенапряжений в нагрузку).

Дополнительно (по сравнению с прототипом) может быть существенно упрощена конструкция энергетической (силовой) части инвертора за счет обеспечения возможности использования управляемых вентилей и встречно-параллельных диодов со сниженными требованиями к их параметрам и более низкой ценой.

Автономный согласованный резонансный инвертор, содержащий подключенный к входным выводам инвертора через дроссели фильтра однофазный мост на управляемых вентилях с встречно-параллельными диодами, зашунтированный конденсатором фильтра, выходные выводы переменного тока однофазного моста соединены с выходными выводами инвертора через коммутирующий дроссель, выходные выводы инвертора зашунтированы компенсирующим конденсатором.



 

Похожие патенты:

Высоковольтный силовой тиристорный вентиль (модуль-тиристор) относится к электротехнике, в частности, к области высоковольтной преобразовательной техники.

Схема автономного инвертора-стабилизатора синусоидального напряжения 12в 220в относится к электротехнике и к импульсной силовой электронике, в частности - к преобразователям знакопостоянного напряжения в синусоидальное, т.е. к так называемым автономным инверторам и предназначена для использования в автономных системах электропитания и в электроприводах на перспективных авиакосмических летательных аппаратах с преимущественно или полностью электрифицированным приводным оборудованием.

Устройство и работа многофункционального сварочного зарядного устройства-инвертора относится к электротехнике, в частности, к сварочному оборудованию и может быть использована в однофазных переносных или стационарных полуавтоматах электродуговой сварки плавящимся электродом в среде защитного газа, в качестве источника бесперебойного питания, а также для зарядки аккумуляторных батарей.
Наверх