Самонастраивающаяся система управления

 

ОП ИСАНИЕ

ИЗОБРЕТЕН ИЯ

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ () I) 744446

Союз Советскки

Соцмалистмческии

Республик (61) Дополнительное к авт. свид-ву (22) Заявлено 20.04.78 (21) 2601230/18-24 с присоединением заявки М (51)М. Кл.

G 05 В 13/00

Геоударстванный комитет

СССР (28 ) П риорм тет ао делам изобретений и открытий

Опубликовано 30.06.80, Бюллетень J% 24

Дата опубликования описания 30.06.8(} (53) УДК 62-SO (088.8) (72) Автор изобретения

С. К. Васильев (7I) Заявитель (54) САМОНАСТРАИВАЮЩАЯСЯ СИСТЕМА УПРАВЛЕНИЯ т0

Изобретение относится к автоматическому управлению и может быть использовано в оптимальных самонастраивающихся следящих системах.

Известны работы по исследованию и созданию экстремальных систем, обеспечивающих экстремум заданного показателя качества систем при неполной априорной информации о входных сигналах в системе.

Наиболее близким техническим решением является самонастраивающаяся следящая система, содержащая последовательно соединенные первый синхронный детектор, первый интегратор, первый исполнительный орган, регулятор, блок определения дисперсии помехи и блок 15 вычисления дисперсии ошибки, второй выход регулятора соединен через последовательно включенные объект управления и блок сравнения со вторым входом блока определения дисперсии помехи и со вторым входом регу лятора (I), Однако недостатком известной системы является то, что в качестве измеряемых характеристик выбраны спектральные плотности, что ограничивает класс применяемых- систем, )сигналов н вид критериев. Входные сигналы и системы должны быть стационарными, а критерий — среднеквадратическое отклонение, т.е. случай при нулевом математическом ожидании ошибки, что на практике встречается достаточно редко, что уменьшает точность системы управления.

Цель изобретения — повышение точности за счет введения оптимальной самонастройки при учете на входе нестационарного случайного процесса с,неизвестными дисперсией и математическим ожиданием помехи.

Поставленная цель достигается тем, что она содержит последовательно соединенные блок определения математического ожидания помехи, блок вычисления математического ожидания ошибки, квадратор, сумматор, второй синхронный детектор, второй интегратор и второй исполнительный орган, выход которого соединен с третьим входом регулятора, второй вход и третий выход которого соединены с соответствуюшими входами блока определения математического ожидания помехи, а выход блока

3 744446 вычисления дисперсии ошибки соединен со вто рым входом сумматора, Такое устройство обеспечивает оптимальную самонастройку системы по критерию минимума, второго начального момента ошибки.

5 (А =гт> + Q

E E > (1) учитывающего не только дисперсию ошибки, но и математическое ожидание m, 4 математического ожидания ошибки m квадратор 12 и сумматор (самонастройки) 6.

Выход сумматора 6 подключен с первым и вторым синхронными детекторами 7, 13 по соответствующим каналам неизвестных вероятностных характеристик помехи Bz и mz, Выходы синхронных детекторов 7,13 через последовател1но включенные первый и второй интеграторы 8,14 и первый и второй исполнительные органы 9,15 замкнуты на регулятор 1 основного контура системы управления. где К вЂ” некоторое положительное число.

С выхода интеграторов 8,14 напряжение, пропорциональное значениям mz u Dz воздейо о ствует на реверсивные двигатели исполнительных органов 9,15, которые формируют алгоритм регулятора (путем иэмененйя параметров корректирующего контура), так чтобы значение критерия аг, характеризующее ошибку системы было минимально, т.е. чтобы реальная характеристика системы приближалась к значению, обеспечивающему экстремум выбранного критерия оптимальности.

На чертеже представлена функциональная ñõåма, реализующая самонастраивающуюся систему управления.

Система содержит регулятор 1, объект 2 управления, блок 3 сравнения, блок 4 определения дисперсии помехи, блок 5 вычисления дисперсии ошибки, сумматор 6, первый синхронный детектор 7, первый интегратор 8, первый исполнительный орган 9, блок 10 определения математического ожидания помехи, блок

11 вычисления математического ожидания ошибки, квадратор 12, второй синхронный детектор 13, второй интегратор 14„второй исполнительный орган 15.

На основной контур линейной системы, со- 25 стоящей из регулятора 1 и объекта управления

2, действует нестационарный случайный сигнал ошибки E(t), являющийся суммой некорррелированных между собой полезного сигнала

X{t) и помехи Z(t) и онределяюшийся по ЭО формуле E(t) =X(t) + Z(t) — 8(t) . Известны математическое ожидание ъх(t) и корреляционная функция Кх(t), а также нормированная корреляционная функция помехи Rz(c). Мате. матическое ожидание помехи п>х и дисперсия

Dz и их закон, распределения неизвестен, Поскольку перед началом работы следящей системы неизвестны вероятностные характеристики помехи О и mz для оптималь. ной системы, необходим контур самонастрой- 4о ки, который настраивал бы параметры О и

mz на экстремальные значения, по обеспечивало бы оптимальную систему по критерию минимума второго начального момен а ошибки (1).

Система содержит два канала: формирователь дисперсии ошибки — 0 с помощью последовательного включения блока 4 определения дисперсии помехи Dz, на который поступают сигналы с одного из выходов и входа регулятора 1 и блока 5 вычисления дисперсии ошибки D, выходом соедийешюго с сумматором (самонастройки) 6, и формирователь квадрата математического ожидания ошиб2 ки m-, включающии последовательно соединенные блок 10 определения математического ожйдания помехи mz, на который поступают сигналы с выхода регулятора i и сигнал ошибки системы E(t), блок 11 вычисления

Во время работы системы по информации со входа регулятора 1, поступающей,в соответсвующие блоки, вычисляются математические ожцдания, а также дисперсии помехи и ошибки с использованием начальной информации. С выхода сумматора 6 сигнал напряжения, пропорциональный критерию оптимальности самонастройки (1) в функции от известных произвольных параметров mz, Dz +(mz.

Dz), поступает в синхронные детекторы 7,13.

Чтобы осуществлялась оптимальная самонастройка, т.е, чтобы вместо произвольных значений

mz u Dz в критерии использовались оптимальные значения mz и Dz, необходимо опрео делить производные от критерия по параметрам, поэтому по каждому каналу отдельно ищутся компоненты градиента в виде

Е(Е с>гг3 д Q

Движение к экстремуму (минимуму) критерия реализуется с помощью градиентного метода, используя, например, систему реверсивных двигателей да (m,D 1 . ЭФ (,гп гп с> 11

z Z

Главным достоинством предлагаемой системы является максимальный учет действующих помех прн работе системы в реальных условиях,,что обеспечивает высокую точность отработки, полезного сигнала.

744446 6 математического ожидания помехи, блок вычисления математического ожидания ошибки, квадратор, сумматор, второй синхронный детектор, второй интегратор и второй исполнительный орган, выход которого соединен с третьим входом регулятора, второй вход и третий выход которого соединены с соответствующими входами блока определения математического ожидания помехи, а выход блока вычисления дисперсии ошибки соединен со вто. рым входом сумматора.

Источники информации, принятые во внимание при экспертизе

1. Авторское свидетельство СССР Р 145646, кл. Ц 05 В 13/00, 1961 (прототип).

Самонастраивающаяся система управления, содержащая последовательно соединенные первый синхронный детектор, первый интегратор, первый исполнительный орган„регулятор, блок определения дисперсии помехи и блок вычисления дисперсии ошибки, второй выход регулятора соединен через последовательно включенные объект управления и блок сравнения со 1п вторым входом блока определения дисперсии помехи и со. вторым входом регулятора, отличающаяся тем, что, с целью повышения точности системы, она содержит последовательно соединенные блок определения

Формула изобретения

ЦНИИПИ Заказ 3788/10

Тираж 956 Подписное

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

Самонастраивающаяся система управления Самонастраивающаяся система управления Самонастраивающаяся система управления 

 

Похожие патенты:

Изобретение относится к системам автоматического управления динамическими объектами широкого класса с неизвестными переменными параметрами и неконтролируемыми возмущениями

Изобретение относится к системам автоматического управления динамическими объектами широкого класса с неизвестными переменными параметрами и неконтролируемыми возмущениями

Изобретение относится к системам автоматического управления динамическими объектами широкого класса с неизвестными переменными параметрами и неконтролируемыми возмущениями

Изобретение относится к системам человек-машина (СЧМ), в частности к системам управления динамическими объектами, и может быть использовано преимущественно в СЧМ, работающих в экстремальных стрессовых условиях

Изобретение относится к системам автоматического управления и может быть использовано для линейных динамических объектов управления с постоянными или медленно меняющимися параметрами

Изобретение относится к области автоматического управления и предназначено для использования в системах управления электрогидроприводами

Изобретение относится к автоматическому управлению и регулированию и может быть использовано при построении систем управления циклическими объектами с запаздыванием
Наверх