Автономный аккумулятор холода

Аккумуляторы холода широко используются в различных областях промышленности, в том числе в пищевой и мясомолочной для снятия пиковых нагрузок на холодильное оборудование. Автономный аккумулятор холода для охлаждения газообразного хладоносителя содержит электродную приставку, включающую генерирующий и заземленный электроды, диэлектрические втулки и диэлектрическую сетку, закрепленные к корпусу аккумулятора холода с помощью замковых устройств, при этом капсулы заполнены теплоемким веществом и расположены на сетчатых перегородках с отверстиями, позволяющими проходить потоку газообразного хладоносителя между капсулами в охлаждаемый объект, в котором, наряду с охлаждением, осуществляется его электроантисептирование. 2 ил.

 

Изобретение относится к области аккумулирования холода.

Известен аккумулятор холода (SU №340856, кл. F25D 3/00, опубл. 1972), содержащий теплоизолирующий корпус, разделенный перегородками на отдельные ячейки, в которых устанавливаются охлаждающие элементы, выполненные в виде перфорированного резервуара, заполненного герметичными емкостями с эвтектическим раствором.

Недостатками данного изобретения является то, что при нарушении герметичности емкостей снижается производительность аппарата, а негерметичность сложно обнаружить. При этом, для его замены потребуется время для разборки и сборки разделительных стержней, что приводит к нарушению режима эксплуатации. Не обеспечивается бактерицидный эффект при обработке жидких сред.

Известен аккумулятор холода (SU №1483212, кл. F25D 3/00, опубл. 1989), содержащий теплоизолирующий корпус, с размещенными в нем герметичными емкостями, заполненных холодоаккумулирующей средой, а герметичные емкости находятся в подвешенном состоянии.

Недостатками являются сложность конструкции и в замене герметичных элементов, т.к. они соединены в гирлянды, и при выходе из строя одного элемента необходимо извлекать всю гирлянду из нескольких элементов. Практически невозможно регулировать производительность аппарата, так как гидравлическое сопротивление среды постоянно в процессе работы. Также не обеспечивается бактерицидный эффект при обработке жидкостной среды.

Наиболее близким аналогом (прототипом) к заявленному является аккумулятор холода (FR №2732453, кл. F28D 20/02, опубл. 1996), содержащий вертикальный резервуар, в котором размещены охлаждающие элементы, выполненные в форме сфер, поверхность которых покрыта выступами в форме усеченных конусов, и заполненных холодоаккумулирующим веществом. Аккумулятор снабжен распылителем для хладоносителя.

Основным недостатком является сложность изготовления холодоаккумулирующих элементов и их труднодоступность в резервуаре. Негерметичность элементов сложно обнаружить. Зарядка и разрядка аккумулятора может осуществляться только жидким хладоносителем.

Наличие выступов в сферах в процессе работы с течением времени перестает выполнять свои функции, так как в них отлагаются примеси, содержащиеся в охлаждаемой среде, и возрастает термическое сопротивление, снижающее производительность аккумулятора холода. Кроме того, на выходе охлаждаемой жидкости из аккумулятора холода имеется застойная зона, так как днище аккумулятора горизонтальное и скорость жидкости минимальна и практически холодоаккумулирующие элементы не работают так, как на противоположной его стороне и практически движение жидкости отсутствует. Форсунки распылителя в процессе работы теряют свою производительность, вследствие отложения солей, содержащихся в охлаждаемой жидкости. В прототипе не обеспечивается бактерицидная обработка жидких сред.

Целью предлагаемого изобретения является создание автономного, универсального аккумулятора холода, обеспечивающего интенсификацию теплообмена, регулировку производительности охлаждения, бактерицидную обработку жидких и газовых (например, воздушной) обрабатываемых сред, а также энергоресурсосбережение.

Сущность изобретения заключается в том, что для охлаждения газообразного хладоносителя при подаче напряжения от источника тока между генерирующим и заземленным электродами, образующими электродную приставку, возникает коронный разряд, создающий ионизированный газовый поток, движущийся со скоростью от 2 м/с и выше, к охлажденным капсулам и заполненным теплоемким веществом. Ионный поток, по сравнению с воздушным потоком, за счет высокой подвижности ионов активно разрушает наружный пограничный слой капсул, уменьшая его термическое сопротивление, интенсифицируя их теплообмен. Кроме того, в корпусе аккумулятора холода расположены сетчатые перегородки с отверстиями, позволяющими распределять электроконвективный воздушный поток равномерно, в сравнении с неравномерным воздушным потоком, поступающим, например, от вентилятора.

За счет электроконвективного потока газообразного хладоносителя осуществляется его электроантисептирование, т.е. наблюдается бактерицидный эффект.

Технический результат достигается тем, что при охлаждении газообразного хладоносителя, поступающего в аккумулятор холода, содержащий корпус с сетчатыми перегородками, имеющими отверстия, в которые установлены охлаждающие капсулы, заполненные теплоемким веществом, для их устойчивого расположения. К корпусу, установленному на колесиках, с помощью замковых устройств прикреплена электродная приставка, содержащая генерирующий электрод с проволочными элементами и заземленный электрод, выполненный в виде металлической сетки, диэлектрическими втулками, расположенными между генерирующим и заземленным электродами, и диэлектрическую сетку, закрывающую генерирующий и заземленные электроды, для безопасности эксплуатации автономного аккумулятора холода.

На фиг. 1 представлен предложенный автономный аккумулятор холода для охлаждения газообразного хладоносителя.

Предложенный автономный аккумулятор холода (фиг. 1) содержит корпус 1 для входа и выхода газообразного хладоносителя, установленный на роликах 2, электродную приставку, включающую заземленный электрод 3, диэлектрические втулки 4, генерирующий электрод 5, с проволочными элементами, диэлектрическую сетку 6, замковое устройство 7, сетчатые перегородки 8 с отверстиями, расположенными в корпусе 1, герметичные капсулы 9, заполненные теплоемким веществом, датчики температур 10, расположенные на входе и выходе газообразного хладоносителя, ручки 11 для перемещения автономного аккумулятора при зарядке и разрядке и поддона 12 для сбора конденсата, с последующим его испарением.

Работает автономный аккумулятор холода следующим образом.

Для охлаждения газообразного хладоносителя осуществляют зарядку капсул в холодильной камере (на фиг. 1 не показано) затем устанавливают аккумулятор холода в охлаждаемый объект, подают напряжение на генерирующий электрод 5. Между электродами 5 и 3 возникает коронный разряд и образующийся электроконвективный поток направляется к герметичным капсулам, заполненных теплоемким веществом где он охлаждается и поступает в охлаждаемый объект, одновременно осуществляется бактерицидный эффект газообразного хладоносителя за счет электроантисептирования. После поглощения теплоты при фазовом переходе теплоемкого вещества по сигналу термодатчика отключается генерирующая электродная приставка и автономный аккумулятор холода вновь поступает на зарядку.

Для охлаждения жидкостной среды с использованием автономного аккумулятора холода с помощью замкового устройства снимают генерирующую электродную приставку, отключают источник питания и применяют генератор озона (13) и диспергатор (14), опускаемый в жидкий хладоноситель, находящийся в емкости (15), осуществляя его барботирование для уничтожения микрофлоры, содержащейся в хладоносителе, т.е. достигается бактерицидный эффект (см. фиг. 2).

Например, данным способом можно охлаждать фляги (16) с молоком, поступающим после дойки до прибытия охлаждаемой автоцистерны, с последующей его доставкой на молочное предприятие.

Автономный аккумулятор холода для охлаждения хладоносителя, содержащий капсулы, заполненные теплоемким веществом и размещенные в корпусе, отличающийся тем, что содержит электродную приставку, обеспечивающую электроантисептирование газообразного хладоносителя и включающую генерирующий и заземленный электроды, диэлектрические втулки и диэлектрическую сетку, закрепленные на корпусе аккумулятора холода с помощью замковых устройств, при этом капсулы расположены на сетчатых перегородках с отверстиями, позволяющими проходить потоку газообразного хладоносителя между капсулами к охлаждаемому объекту.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано во вращающихся дисковых регенеративных подогревателях теплоэнергетических и силовых установок.

Изобретение относится к области теплотехники и может быть использовано во вращающихся дисковых регенеративных подогревателях теплоэнергетических и силовых установок.

Изобретение относится к области теплотехники и может быть использовано в регенеративных подогревателях рабочего тела газотурбинных установок. Изобретение заключается в термофизической изоляции частей каркаса, несущих основные силовые нагрузки от переменного поля температур вследствие поддержания постоянства температуры на теплопередающей поверхности каждой теплообменной ячейки за счет изменения агрегатного состояния термоаккумулирующего вещества, размещенного в полости каждой теплообменной ячейки и вследствие этого поддержания постоянства температур теплообменных ячеек с внутренними каналами, объединенных в ячеистую структуру, и сохранения цилиндрической формы каркаса ротора дискового высокотемпературного вращающегося подогревателя рабочего тела энергетической установки.

Изобретение относится к области теплотехники и может быть использовано в регенеративных подогревателях рабочего тела газотурбинных установок. Изобретение заключается в термофизической изоляции частей каркаса, несущих основные силовые нагрузки от переменного поля температур вследствие поддержания постоянства температуры на теплопередающей поверхности каждой теплообменной ячейки за счет изменения агрегатного состояния термоаккумулирующего вещества, размещенного в полости каждой теплообменной ячейки и вследствие этого поддержания постоянства температур теплообменных ячеек с внутренними каналами, объединенных в ячеистую структуру, и сохранения цилиндрической формы каркаса ротора дискового высокотемпературного вращающегося подогревателя рабочего тела энергетической установки.

Изобретение относится к гибким листовым материалам из РСМ с большой плотностью накопления скрытой тепловой энергии для применения при регулировании тепловой энергии.

По настоящему изобретению предлагается система (10) аккумулирования энергии, предназначенная для использования с котлом (20). Система (10) аккумулирования энергии содержит множество блоков (101, 102, 103, 104) аккумулирования тепловой энергии.

По настоящему изобретению предлагается система (10) аккумулирования энергии, предназначенная для использования с котлом (20). Система (10) аккумулирования энергии содержит множество блоков (101, 102, 103, 104) аккумулирования тепловой энергии.

Изобретение относится к устройству для ингаляции, включающему источник тепла. В качестве источника тепла предлагается состав на основе тригидрата ацетата натрия (SAT), выполненный с возможностью нагрева содержащегося в устройстве нагреваемого материала.

Изобретение относится к композиционному материалу для термического накопителя энергии с термопластичным материалом, а также к способу получения такого композиционного материала.

Изобретение относится к теплотехнике и может быть использовано для изготовления элементов теплообменников, которые позволяют создание энтальпийных обменников, причем коэффициент полезного действия обмена ощутимой энергией и обмена потенциальной энергией может быть различным и контролируемым, и особенно улучшенным, при этом способ для производства элементов теплообменника включает: а) производство пластинчатого элемента с определенными внешними размерами и гофрами в области с внутренней стороны границы, b) перфорирование пластины в заранее определенных областях и с заранее определенными размерами, с) заполнение перфорационных отверстий полимером с возможностью извлечения потенциальной энергии и d) затвердение полимера.

Изобретение может быть использовано для охлаждения объектов, а также для очистки поверхностей деталей промышленного оборудования от эксплуатационных и технологических поверхностных загрязнений.
Наверх