Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях



Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
Способ получения препарата рибонуклеопротеинового комплекса crispr/cas и препарат для выявления гена антибиотикоустойчивости bla vim-2 (металло-бета-лактамаза класс b vim-2) pseudomonas aeruginosa в ультранизких концентрациях
C12N2310/20 - Микроорганизмы или ферменты; их композиции (биоциды, репелленты или аттрактанты или регуляторы роста растений, содержащие микроорганизмы, вирусы, микробные грибки, ферменты, агенты брожения или вещества, получаемые или экстрагируемые из микроорганизмов или из материала животного происхождения A01N 63/00; пищевые составы A21,A23; лекарственные препараты A61K; химические аспекты или использование материалов для бандажей, перевязочных средств, впитывающих подкладок или хирургических приспособлений A61L; удобрения C05); размножение, консервирование или сохранение микроорганизмов (консервирование живых тканей или органов людей или животных A01N 1/02); мутации или генная инженерия; питательные среды (среды для микробиологических испытаний C12Q)
C12N15/113 - Получение мутаций или генная инженерия; ДНК или РНК, связанные с генной инженерией, векторы, например плазмиды или их выделение, получение или очистка; использование их хозяев (мутанты или микроорганизмы, полученные генной инженерией C12N 1/00,C12N 5/00,C12N 7/00; новые виды растений A01H; разведение растений из тканевых культур A01H 4/00; новые виды животных A01K 67/00; использование лекарственных препаратов, содержащих генетический материал, который включен в клетки живого организма, для лечения генетических заболеваний, для генной терапии A61K 48/00 пептиды вообще C07K)

Владельцы патента RU 2745637:

Федеральное бюджетное учреждение науки "Центральный научно-исследовательский институт эпидемиологии" Федеральной службы по надзору в сфере защиты прав потребителей и благополучия человека (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора) (RU)

Данное изобретение относится к области генной инженерии и биотехнологии. Предложен способ получения гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, а также препарат рибонуклеопротеинового комплекса CRISPR/CAS для выявления гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa. Настоящее изобретение может найти дальнейшее применение в выявлении единичных копий гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa. 2 н. и 4 з.п. ф-лы, 13 ил., 5 табл., 5 пр.

 

Область техники

Изобретение относится к области генной инженерии и биотехнологии, а именно к направляющим РНК, которые могут быть использованы в системах CRISPR-Cas12 в составе рибонуклеопротеиновых комплексов для выявления (обнаружения, детекции) гена антибиотикоустойчивости blaVIM-2 (металло-бета-лактамаза класс В VIM-2) Pseudomonas aeruginosa, а также к способам получения препаратов рибонуклеопротеинового комплекса CRJSPR/CAS и к самим препаратам.

Изобретение позволяет in vitro выявлять единичные копии гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa.

Направляющие РНК, описанные в настоящей заявке, могут быть использованы для детекции гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa после проведения специфической амплификации фрагмента ДНК гена blaVIM-2. Амплификация при этом может быть проведена различными способами, среди которых полимеразная цепная реакция (PCR); петлевая изотермическая амплификация (LAMP); геликаза-зависимая амплификация (HDA); рекомбиназа-опосредованная амплификация (RPA); амплификация со смещением цепи (SDA); амплификация, основанная на последовательности нуклеиновых кислот (NASBA); опосредованная транскрипцией амплификация (ТМА); амплификация, опосредованная никирующим ферментом (NEAR); круговая амплификация (RCA) и многие другие виды амплификации.

Направляющие РНК, описанные в настоящей заявке, могут быть использованы для разработки высокочувствительных и высокотехнологичных диагностических систем нового поколения на основе CRISPR технологий для борьбы с распространением антибиотикоустойчивых бактериальных патогенов.

Уровень техники

Для решения эпидемиологических задач по расшифровке вспышек инфекционных болезней, выявления и идентификации возбудителя, а также детекции специфических бактериальных генов необходимы разработка и внедрение в практику работы надзорных и мониторинговых служб современных технологий молекулярной эпидемиологии. Одной из таких технологий является использование элементов генетического редактирования системы CRISPR/CAS. Данная технология развивается достаточно эффективно в отношении создания средств лечения некоторых болезней, несмотря на ряд трудностей, связанных с возникновением непредвиденных мутаций. При углубленных исследованиях в области применения CRISPR/CAS системы, было выяснено, что она может быть использована для тонких диагностических процедур при выявлении возбудителя/ей инфекции у человека, а также их генотипирования.

В 2018 году было показано, что один из ферментов CRISPR системы - Cas12 после распознавания своей целевой ДНК-мишени начинает неспецифически гидролизовать одноцепочечную, а также двухцепочечную ДНК. Такое свойство Cas12 можно использовать в качестве индикатора присутствия определенной мишени, например, генома вируса или бактерии. Исследователи использовали это открытие для создания технологической платформы обнаружения нуклеиновых кислот, известной как DETECTR (DNA Endonuclease Targeted CRISPR Trans Reporter - ДНК-нацеленная эндонуклеаза CRISPR транс репортер). Впервые DETECTR была использована для выявления и генотипирования вируса папилломы человека (HPV). Предложенная платформа объединяет нуклеазу Cas12a, ее направляющую РНК, специфичную к нуклеиновой кислоте HPV, флуоресцентную репортерную молекулу. Технология DETECTR используется для обнаружения целевой ДНК-мишени после предварительной амплификации (Chen JS, Ma Е, Harrington LB, Da Costa M, Tian X, Palefsky JM, Doudna JA. CRISPR-Cas12a target binding unleashes indiscriminate single-stranded DNase activity. Science. 2018 Apr 27; 360(6387):436-439).

He менее важным приложением системы CRISPR/CAS является идентификация бактериальных патогенов и детекция специфических бактериальных генов. Так, например, с помощью платформы SHERLOCK (Specific High Sensitivity Enzymatic Reporter UnLOCKing - Специфичное Высокочувствительное Ферментативное Репортерное Разблокирование) удалось корректно генотипировать ряд штаммов Escherichia coli и Pseudomonas aeruginosa при низкой перекрестной реактивности. Кроме того, платформа SHERLOCK использована для дифференциации клинических изолятов Klebsiella pneumoniae с двумя различными генами антибиотикоустойчивости, что открывает значительные перспективы к созданию мультиплексных систем для одновременной идентификации бактериальных патогенов и выявления у них генов антибиотикоустойчивости.

В связи с этим крайне актуальной является задача разработки новых эффективных методик выявления генов антибиотикоустойчивости у бактериальных патогенов, основанных на генетических технологиях, таких как CRISPR/CAS.

В ходе изучения уровня техники были найдены научные статьи, описывающие разработку и получение направляющих РНК для выявления генов антибиотикоустойчивости у бактериальных патогенов с помощью технологии CRISPR/CAS ( V., Rajer, F., Frykholm, K., Nyberg, L.K., Quaderi, S., Fritzsche, J., Kristiansson, E., Т., Sandegren, L., Westerlund, F., 2016. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci. Rep. 6. https://doi.org/10.1038/srep37938; Quan, J., Langelier, C., Kuchta, A., Batson, J., Teyssier, N., Lyden, A., Caldera, S., McGeever, A., Dimitrov, В., King, R., Wilheim, J., Murphy, M., Ares, L.P., Travisano, K.A., Sit, R., Amato, R., Mumbengegwi, D.R., Smith, J.L., Bennett, A., Gosling, R., Mourani, P.M., Calfee, C.S., Neff, N.F., Chow, E.D., Kim, P.S., Greenhouse, В., DeRisi, J.L., Crawford, E.D., 2019. FLASH: a next-generation CRISPR diagnostic for multiplexed detection of antimicrobial resistance sequences. Nucleic Acids Res. 47, e83. https://doi.org/10.1093/nar/gkz418).

Ближайшим аналогом изобретения является статья https://doi.org/10.1038/srep37938 ( V., Rajer, F., Frykholm, K., Nyberg, L.K., Quaderi, S., Fritzsche, J., Kristiansson, E., Т., Sandegren, L., Westerlund, F., 2016. Direct identification of antibiotic resistance genes on single plasmid molecules using CRISPR/Cas9 in combination with optical DNA mapping. Sci. Rep. 6. https://doi.org/10.1038/srep37938), в которой описывается анализ, основанный на оптическом картировании ДНК отдельных плазмид, несущих гены антибиотикоустойчивости, бактериальных изолятов в наножидкостных каналах, который предоставляет подробную информацию об этих плазмидах, в том числе о наличии/отсутствии в них генов антибиотикоустойчивости. Описанный анализ позволяет идентифицировать гены антибиотикоустойчивости с использованием CRISPR/CAS9 и направляющих РНК, специфических к генам антибиотикоустойчивости (blaCTX-М группа 1, blaCTX-М группа 9, blaNDM и blaKPC). В ходе анализа рибонуклеопротеиновый комплекс CRISPR/CAS9 линеаризует кольцевые плазмиды в районе гена антибиотикоустойчивости, полученные линейные молекулы ДНК идентифицируется с помощью оптического картирования ДНК.

Предложенный анализ только в перспективе сможет быть применен к образцам с низкой концентрацией ДНК - предложенный способ, описывает проведение анализа с образцами, содержащими около 108 копий плазмидных ДНК, несущих гены антибиотикоустойчивости (60 нг ДНК, плазмидной ДНК размером 67 т.п.н. - 220 т.п.н.). Кроме того, недостатками описанного анализа является необходимость использования дорогостоящего высокотехнологичного оборудования (специализированные нанофлюидные биочипы, инвертированный флуоресцентный микроскоп с увеличением не менее 100×), а также необходимость проведения сложного анализа полученных данных с применением специализированного программного обеспечения.

Исходя из этого, возникает техническая проблема, заключающаяся в необходимости разработки и получения направляющих РНК для выявления единичных копий гена антибиотикоустойчивости blaVIM-2 (металло-бета-лактамаза класс В VIM-2) Pseudomonas aeruginosa in vitro, а также в разработке способов получения препаратов рибонуклеопротеинового комплекса CRISPR/CAS на их основе.

Раскрытие сущности

Предложенная технология перспективна для разнообразных применений, включая количественное определение ДНК/РНК, быструю мультиплексную детекцию экспрессии, другие виды чувствительной детекции, например, выявление загрязнения образцов нуклеиновыми кислотами. Технология основанная на CRISPR/CAS является многофункциональной, устойчивой к ошибкам технологией детекции ДНК, пригодной для быстрой постановки диагнозов, включая инфекционные заболевания, и генотипирования инфекционных агентов и выявление генов антибиотикоустойчивости бактериальных патогенов.

Применение предложенной технологии делает возможным создание диагностических систем нового поколения, которые будут обладать следующими свойствами:

- высокая чувствительность;

- возможность проведения диагностики у постели больного;

- возможность проведения диагностики в полевых условиях без применения специализированного высокотехнологичного оборудования;

- скорость и простота анализа;

- сниженная стоимость анализа;

- отсутствие необходимости оснащения диагностической лаборатории дорогостоящим оборудованием;

- отсутствие необходимости проведения выделения нуклеиновых кислот возбудителя.

Изобретение относится к новым средствам - направляющим РНК, которые могут быть использованы в системах CRISPR-Cas12 для ультрачувствительного выявления, идентификации, обнаружения или детекции гена антибиотикоустойчивости biaVIM-2 Pseudomonas aeruginosa в биологических образцах.

Технической задачей предложенного изобретения является разработка новых средств - направляющих РНК, которые могут быть использованы в системах CRISPR-Cas12 с белками Cas12, например, LbCpf1 из Lachnospiraceae, для ультрачувствительного выявления гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa.

При осуществлении настоящего изобретения, согласно приведенной в формуле изобретения совокупности существенных признаков, достигается неожиданный технический результат - возможность ультрачувствительного выявления гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa до единичных копий в одной реакции. Изобретение обеспечивает повышение эффективности выявления гена антибиотикоустойчивости biaVIM-2 Pseudomonas aeruginosa с 1-5×105 до 2-3×102 копий/мл. Также предложенное изобретение позволяет увеличить выход продукта реакции, получив желаемую концентрацию финального препарата направляющей РНК, и обеспечивает формирование корректной конформации шпильки, содержащейся в направляющей РНК.

Технический результат достигается за счет:

- разработки молекул направляющих РНК, которые могут быть использованы в системах CRISPR-Cas12 для ультрачувствительного выявления гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, где указанные направляющие РНК выбраны из последовательностей SEQ ID NO: 1-5, способны связываться с целевыми высоко консервативными участками гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, содержат РНК-шпильку, которая распознается РНК-направляемой ДНК-эндонуклеазой LbCpf1 из Lachnospiraceae, с обеспечением выявления единичных копий гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa.

- применения РНК-направляемой ДНК-эндонуклеаз LbCpf1 из Lachnospiraceae, полученной согласно способу, разработанному авторами ранее (Патент RU 2707542, 28.03.2019), для создания рибонуклеопротеиновых комплексов (РПК) системы CRISPR/CAS, пригодных для детекции гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa в ультранизких концентрациях (единичные копии).

- разработки набора специфических олигонуклеотидов, выбранных из SEQ ID NO: 6 и SEQ ID NO: 7, для предварительной амплификации фрагмента гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa.

- оптимизации условий проведения предварительной амплификации фрагмента гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa.

- определения условий проведения ультрачувствительной детекции гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa и установления последовательности стадий метода.

Направляющие РНК согласно настоящему изобретению соответствуют высоко консервативным фрагментам гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa. Наиболее предпочтительны направляющие РНК, распознающиеся РНК-направляемой ДНК-эндонуклеазой LbCpH из Lachnospiraceae, характеризующиеся, имеющие или содержащие нуклеотидную последовательность, выбранную из:

- SEQ ID NO: 1;

- SEQ ID NO: 2;

- SEQ ID NO: 3;

- SEQ ID NO: 4;

- SEQ ID NO: 5;

- или идентичной любой из них по меньшей мере на 80% - 99,99%,

- или комплементарной любой из них,

- или гибридизующейся с любой из них в строгих условиях.

Специфические олигонуклеотиды для проведения предварительной амплификации фрагмента гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa согласно настоящему изобретению соответствуют высоко консервативному участку гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa. Наиболее предпочтительны олигонуклеотиды, характеризующиеся, имеющие или содержащие нуклеотидную последовательность, выбранную из:

- SEQ ID NO: 6;

- SEQ ID NO: 7;

- или идентичной любой из них по меньшей мере на 80% - 99,99%,

- или комплементарной любой из них,

- или гибридизующейся с любой из них в строгих условиях.

Согласно предложенному изобретению получают рибонуклеопротеиновые комплексы (РПК), состоящие из по меньшей мере одной направляющей РНК и РНК-направляемой ДНК-нуклеазы системы CRISPR/CAS LbCpf1 из Lachnospiraceae, пригодные для использования для выявления гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa в ультранизких концентрациях (единичные копии).

Препараты РПК представляют собой растворы, содержащие направляющую РНК, выбранную из SEQ ID NO: 1-5, объединенную с белком системы CRISPR/CAS (LbCpf1 из Lachnospiraceae) или лиофильно высушенные РПК.

Полученные направляющие РНК могут быть использованы в составе набора для обнаружения гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с инструкцией по применению.

Набор может дополнительно включать компоненты для проведения предварительной амплификации высоко консервативного фрагмента гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, в том числе один или несколько специфических олигонуклеотидов, выбранных из SEQ ID NO: 6 и SEQ ID NO: 7. При этом по меньшей мере одна направляющая РНК в составе набора может находиться в комплексе с белком системы CRISPR/CAS (LbCpf1 из Lachnospiraceae) в одном контейнере или отдельно в разных контейнерах.

Способ получения препарата рибонуклеопротеинового комплекса CRISPR/CAS предусматривает:

(i) синтез направляющей РНК с SEQ ID NO: 1-5,

(ii) объединение CAS-белка семейства CRISPR/CAS LbCpf1 из Lachnospiraceae, в комплекс с по меньшей мере одной направляющей РНК, полученной на стадии (i), и при необходимости

(iii) лиофильную сушку рибонуклеопротеинового комплекса CRISPR/CAS, полученного на стадии (ii),

с получением, таким образом, препарата рибонуклеопротеинового комплекса CRISPR/CAS.

В предложенном способе синтез направляющих РНК может быть проведен методом in vitro транскрипции с последующим переосаждением продуктов реакции in vitro транскрипции из реакционной смеси добавлением хлорида натрия до конечной концентрации 400 тМ и равного объема изопропилового спирта.

Также предложенный способ предусматривает непосредственно перед объединением с CAS-белком прогрев направляющей РНК при 90°С в течение 5 минут и позволяют медленно остыть до комнатной температуры, что обеспечивает формирование корректной конформации шпильки, содержащейся в направляющей РНК.

Предложен препарат рибонуклеопротеинового комплекса CRISPR/CAS для выявления гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, который может быть получен раскрытым в настоящей заявке способом. Препарат содержит CAS-белок семейства CRISPR/CAS LbCpf1 из Lachnospiraceae в комплексе с по меньшей мере одной направляющей РНК с SEQ ID NO: 1-5.

Препарат может быть представлен как в жидкой форме - раствора указанного рибонуклеопротеинового комплекса CRISPR/CAS, так и в виде лиофилизата - лиофильно высушенного порошка указанного рибонуклеопротеинового комплекса CRISPR/CAS.

Предложенная технология позволяет определить единичные копии гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa в биологических образцах пациента, выбранных из жидкости и/или ткани, предположительно содержащих Pseudomonas aeruginosa. Биологическим образцом может быть образец крови, сыворотки или плазмы крови, клеток крови, слюны, мокроты, лимфоидных тканей, тканей кроветворных органов и других биологических материалов от пациента, которые могут быть использованы для анализа на наличие гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa.

Краткое описание чертежей

Фиг. 1. Визуализация фрагмента гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с 37 по 447 п.о. (размером 411 п.о.) после предварительной амплификации при помощи электрофореза в агарозном геле, где цифрами 1-8 обозначены:

1 - ПЦР-продукт blaVIM-2, полученный в ходе амплификации 1 нг модельной матрицы pGEM-T-blaVIM-2;

2 - ПЦР-продукт blaVIM-2, полученный в ходе амплификации 0,1 нг модельной матрицы pGEM-T-blaVIM-2;

3 - ПЦР-продукт blaVIM-2, полученный в ходе амплификации 0,01 нг модельной матрицы pGEM-T-blaVIM-2;

4 - ПЦР-продукт blaVIM-2, полученный в ходе амплификации 0,001 нг модельной матрицы pGEM-T-blaVIM-2;

5 - ПЦР-продукт blaVIM-2, полученный в ходе амплификации 0,0001 нг модельной матрицы pGEM-T-blaVIM-2;

6 - ПЦР-продукт blaVIM-2, полученный в ходе амплификации 0,00001 нг модельной матрицы pGEM-T-blaVIM-2;

7 - отрицательный контроль, не содержащий модельной матрицы pGEM-T-blaVIM-2;

М - стандарты молекулярных масс: снизу вверх 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, 2000, 3000 пар нуклеотидов (GeneRuler 100 bp Plus, Thermo Fisher Scientific, США).

Фиг. 2. Визуализация ПЦР-продуктов, кодирующих направляющие РНК, специфичные к гену антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, при помощи электрофореза в агарозном геле, где цифрами 1-5 обозначены:

1 - ПЦР-продукт, кодирующий sgRNA blaVIM-2 №93;

2 - ПЦР-продукт, кодирующий sgRNA blaVIM-2 №95;

3 - ПЦР-продукт, кодирующий sgRNA blaVIM-2 №207;

4 - ПЦР-продукт, кодирующий sgRNA blaVIM-2 №285;

5 - ПЦР-продукт, кодирующий sgRNA blaVIM-2 №366;

М - стандарты молекулярных масс: снизу вверх 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000, 1200, 1500, 2000, 3000 пар нуклеотидов (GeneRuler 100 bp Plus, Thermo Fisher ScientiRc, США).

Фиг. 3. Профиль флуоресценции в реальном времени для предварительно амплифицированной мишени blaVIM-2 Pseudomonas aeruginosa, обработанной рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №93 и белок LbCpf1.

Фиг. 4. Профиль флуоресценции в реальном времени для предварительно амплифицированной мишени blaVIM-2 Pseudomonas aeruginosa, обработанной рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №95 и белок LbCpf1.

Фиг. 5. Профиль флуоресценции в реальном времени для предварительно амплифицированной мишени blaVIM-2 Pseudomonas aeruginosa, обработанной рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №207 и белок LbCpf1.

Фиг. 6. Профиль флуоресценции в реальном времени для предварительно амплифицированной мишени blaVIM-2 Pseudomonas aeruginosa, обработанной рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №285 и белок LbCpf1.

Фиг. 7. Профиль флуоресценции в реальном времени для предварительно амплифицированной мишени blaVIM-2 Pseudomonas aeruginosa, обработанной рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №366 и белок LbCpf1.

Фиг. 8. Значения флуоресценции в конечной точке (30 цикл анализа, 30 минут) для предварительно амплифицированной мишени blaVIM-2 Pseudomonas aeruginosa, обработанной рибонуклеопортеиновым комплексом, содержащим направляющие РНК sgRNA blaVIM-2 №93, sgRNA blaVIM-2 №95, sgRNA blaVIM-2 №207, sgRNA blaVIM-2 №285 и sgRNA blaVIM-2 №366.

Фиг. 9. Значения флуоресценции в конечной точке (30 цикл анализа, 30 минут) для предварительно амплифицированных с клинических образцов мишеней blaVIM-2 Pseudomonas aeruginosa, обработанных рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №93.

Фиг. 10. Значения флуоресценции в конечной точке (30 цикл анализа, 30 минут) для предварительно амплифицированных с клинических образцов мишеней blaVIM-2 Pseudomonas aeruginosa, обработанных рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №95.

Фиг. 11. Значения флуоресценции в конечной точке (30 цикл анализа, 30 минут) для предварительно амплифицированных с клинических образцов мишеней blaVIM-2 Pseudomonas aeruginosa, обработанных рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA biaVIM-2 №207.

Фиг. 12. Значения флуоресценции в конечной точке (30 цикл анализа, 30 минут) для предварительно амплифицированных с клинических образцов мишеней blaVIM-2 Pseudomonas aeruginosa, обработанных рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №285.

Фиг. 13. Значения флуоресценции в конечной точке (30 цикл анализа, 30 минут) для предварительно амплифицированных с клинических образцов мишеней blaVIM-2 Pseudomonas aeruginosa, обработанных рибонуклеопортеиновым комплексом, содержащим направляющую РНК sgRNA blaVIM-2 №366.

Примеры осуществления изобретения

ПРИМЕР 1: ПОДБОР ПОСЛЕДОВАТЕЛЬНОСТЕЙ-МИШЕНЕЙ В ГЕНЕ АНТИБИОТИКОУСТОЙЧИВОСТИ BLAVIM-2 PSEUDOMONAS AERUGINOSA ДЛЯ СОЗДАНИЯ НАПРАВЛЯЮЩИХ РНК

Для подбора последовательностей-мишеней в гене антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa для создания направляющих РНК были использованы современные алгоритмы in silico анализа нуклеотидных последовательностей и программы, находящиеся в открытом доступе, включая Benchling (https://www.benchling.com/molecular-biology/). Был составлен перечень участков в гене антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с теоретически рассчитанной вероятностью их расщепления в высоко консервативных участках (Таблица 1).

Направляющие РНК, специфически узнающие высоко консервативный участок антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, представлены уникальными последовательностями SEQ ID NO: 1-5.

ПРИМЕР 2: ПОДГОТОВКА МАТЕРИАЛА ДЛЯ ОБНАРУЖЕНИЯ ГЕНА АНТИБИОТИКОУСТОЙЧИВОСТИ BLAVIM-2 PSEUDOMONAS AERUGINOSA МЕТОДОМ ПРЕДВАРИТЕЛЬНОЙ АМПЛИФИКАЦИИ

Подготовку материала для обнаружения гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa проводят методом предварительной амплификации. В качестве модельной матрицы гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa биологического образца используют плазмидную ДНК pGEM-T-blaVIM-2, содержащую в своем составе фрагмент гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с 37 по 447 п.о. (размером 411 п.о.).

Предварительную амплификацию участка, соответствующего фрагменту гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с 37 по 447 п.о., проводят с использованием специфических олигонуклеотидов с SEQ ID NO: 6-7, приведенных в Таблице 2.

ПЦР-продукт, кодирующий фрагмент антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, получают в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов For blaVIM-2 и Rev blaVIM-2 (ГенТерра, Россия). Размер амплифицированного фрагмента blaVIM-2 составляет 411 пар нуклеотидов.

Температурный профиль амплификации для получения ПЦР-продукта, фрагмент гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с 37 по 447 п.о.:

1. денатурация: 95°С в течение 3 минут;

2. 40 циклов амплификации:

95°С - 15 сек,

55°С - 45 сек,

72°С - 30 сек;

3. финальная элонгация: 72°С в течение 5 минут.

В ходе подготовки материала для обнаружения гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa методом предварительной амплификации проводят титрование модельной матрицы pGEM-T-blaVIM-2 путем приготовления серийных разведений (Таблица 3).

Для оценки эффективности предварительной амплификации полученные фрагменты гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa визуализируют при помощи электрофореза в агарозном геле (Фиг. 1).

Подготовленный описанным способом материал используют для экспериментов по выявлению гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с помощью рибонуклеопротеиновых комплексов LbCpf1 из Lachnospiraceae, содержащих направляющие РНК sgRNA blaVIM-2 №93, sgRNA blaVIM-2 №95, sgRNA blaVIM-2 №207, sgRNA blaVIM-2 №285 и sgRNA blaVIM-2 №366, без предварительной очистки.

ПРИМЕР 3: ПОЛУЧЕНИЕ НАПРАВЛЯЮЩИХ РНК И СОЗДАНИЕ РИБОНУКЛЕОПРОТЕИНОВЫХ КОМПЛЕКСОВ ДЛЯ ОБНАРУЖЕНИЯ ГЕНА АНТИБИОТИКОУСТОЙЧИВОСТИ BLAVIM-2 PSEUDOMONAS AERUGINOSA».

Для получения направляющих РНК для обнаружения гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa разработан набор специфических олигонуклеотидов, приведенных в Таблице 4.

Получение направляющих РНК проводят в несколько этапов:

1. получение ПЦР-продукта с использованием набора специфических олигонуклеотидов (табл. 4), кодирующего направляющую РНК, способную связываться с целевым высоко консервативным участком гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, содержащую РНК-шпильку, которая распознается РНК-направляемой ДНК-эндонуклеазой LbCpf1 из Lachnospiraceae;

2. очистка ПЦР-продукта, кодирующего направляющую РНК, специфичную к фрагменту гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa;

3. синтез направляющей РНК, специфичной к фрагменту гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa;

4. очистка направляющей РНК, специфичной к фрагменту гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa.

ПЦР-продукт, кодирующий направляющую РНК sgRNA blaVIM-2 №93, получают в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов T7pr и sgRNA-93-Rev (ГенТерра, Россия). Размер амплифицированного фрагмента, кодирующего sgRNA blaVIM-2 №93, составляет 62 пары нуклеотидов.

ПЦР-продукт, кодирующий направляющую РНК sgRNA blaVIM-2 №95, получают в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов T7pr и sgRNA-95-Rev (ГенТерра, Россия). Размер амплифицированного фрагмента, кодирующего sgRNA blaVIM-2 №95, составляет 62 пары нуклеотидов.

ПЦР-продукт, кодирующий направляющую РНК sgRNA blaVIM-2 №207, получают в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов T7pr и sgRNA-207-Rev (ГенТерра, Россия). Размер амплифицированного фрагмента, кодирующего sgRNA blaVIM-2 №207, составляет 62 пары нуклеотидов.

ПЦР-продукт, кодирующий направляющую РНК sgRNA blaVIM-2 №285, получают в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов T7pr и sgRNA-285-Rev (ГенТерра, Россия). Размер амплифицированного фрагмента, кодирующего sgRNA blaVIM-2 №285, составляет 62 пары нуклеотидов.

ПЦР-продукт, кодирующий направляющую РНК sgRNA blaVIM-2 №366, получают в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) и специфических олигонуклеотидов T7pr и sgRNA-366-Rev (ГенТерра, Россия). Размер амплифицированного фрагмента, кодирующего sgRNA blaVIM-2 №366, составляет 62 пары нуклеотидов.

Температурный профиль амплификации для получения ПЦР-продуктов, кодирующих направляющие РНК:

1. денатурация: 95°С в течение 3 минут;

2. 35 циклов амплификации:

95°С - 15 сек,

55°С - 45 сек,

72°C - 30 сек;

3. финальная элонгация: 72°С в течение 5 минут.

ПЦР-продукты, кодирующие направляющие РНК, специфичные к фрагменту гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, визуализируют при помощи электрофореза в агарозном геле (Фиг. 2).

Очистку ПЦР-продуктов, кодирующих направляющие РНК, специфичные к фрагменту гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, проводят с использованием коммерчески доступного набора ISOLATE II PCR and Gel Kit (BioLine, США) согласно инструкции производителя. Очищенные ПЦР-продукты, кодирующие направляющие РНК, специфичные к фрагменту гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, используют в качестве матрицы для синтеза направляющих РНК.

Синтез направляющих РНК, специфичных к фрагменту гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, осуществляется методом in vitro транскрипции с использованием коммерчески доступных наборов реагентов (HiScribe™ Т7 High Yield RNA Synthesis Kit, NEB, США) согласно инструкции производителя. Продукты реакции in vitro транскрипции переосаждают из реакционной смеси добавлением хлорида натрия до конечной концентрации 400 mM и равного объема изопропилового спирта. Такие модификации протокола производителя, внесенные авторами, позволяют увеличить выход продукта реакции и получить желаемую концентрацию финального препарата направляющей РНК.

Создание готового рибонуклеопротеинового комплекса, содержащего белок семейства CRISPR/CAS LbCpf1 из Lachnospiraceae, и направляющую РНК авторы проводят по стандартному протоколу с некоторыми модификациями (In vitro enzymology of Cas9 // Anders C, Jinek M. Methods Enzymol. 2014; 546:1-20. doi: 10.1016/B978-0-12-801185-0.00001-5).

Непосредственно перед объединением с CAS-белком препарат направляющей РНК (в количестве 250 нг) прогревают при 90°С в течение 5 минут и позволяют медленно остыть до комнатной температуры (инкубация при комнатной температуре не менее 10 минут). Такое прогревание необходимо для формирования корректной конформации шпильки, содержащейся в направляющей РНК. Многие производители коммерческих препаратов CAS-белков пропускают данный этап при подготовке рибонуклеопротеинового комплекса.

Для формирования готового рибонуклеопротеинового комплекса 250 нг CAS-белка LbCpf1 из Lachnospiraceae и подготовленную направляющую РНК смешивают и инкубируют 15 минут при комнатной температуре. Полученный таким способом рибонуклеопротеиновый комплекс готов для выявления гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa.

ПРИМЕР 4: ОБНАРУЖЕНИЕ ЕДИНИЧНЫХ КОПИЙ ГЕНА АНТИБИОТИКОУСТОЙЧИВОСТИ BLAVIM-2 PSEUDOMONAS AERUGINOSA С ПОМОЩЬЮ РИБОНУКЛЕОПРОТЕИНОВЫХ КОМПЛЕКСОВ CRISPR/CAS НА ПРИМЕРЕ МОДЕЛЬНОЙ МАТРИЦЫ

Предварительно амплифицированный материал, полученный способом, описанным в Примере 2, используют в качестве матрицы для обнаружения гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с помощью рибонуклеопротеиновых комплексов CRISPR/CAS, полученных способом, описанным в Примере 3.

Для обнаружения гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с помощью рибонуклеопротеиновых комплексов CRISPR/CAS готовят реакционную смесь, содержащую следующие компоненты:

- 10× буфер (100 mM TrisHCl рН 8,0, 1 М NaCl);

- 50 mM MgCl2 (конечная концентрация в реакционной смеси 10 mM);

- 250 нг рибонуклеопротеинового комплекса (LbCpf1 из Lachnospiraceae и направляющие РНК sgRNA blaVIM-2 №93, sgRNA MaVIM-2 №95, sgRNA blaVIM-2 №207, sgRNA blaVIM-2 №285 и sgRNA blaVIM-2 №366);

- 20 pmol флуоресцентный зонд (6FAM-TTATT-BHQ1);

- мишень (предварительно амплифицированный фрагмента гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa);

- вода mQ.

Реакционные смеси, содержащие все необходимые компоненты, помещают в амплификатор ДТПрайм 5 (ДНК-Технология, Россия) и задают следующие параметры реакции:

30-60 циклов:

37°С - 35 сек,

37°С - 25 сек, съемка флуоресценции.

В первую очередь были проведены эксперименты по обнаружению единичных копий гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с помощью рибонуклеопротеиновых комплексов CRISPR/CAS, сформированных на основе LbCpf1 из Lachnospiraceae, с использованием в качестве мишени модельной матрицы - плазмидной ДНК pGEM-T-blaVIM-2, содержащей в своем составе фрагмент гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с 37 по 447 п.о. размером 411 п.о. Показано, что рибонуклеопротеиновые комплексы CRISPR/CAS обладают способностью выявлять единичные копий гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa. Типичные результаты анализа приведены на примерах профилей флуоресценции в реальном времени для предварительно амплифицированной мишени blaVIM-2 Pseudomonas aeruginosa, обработанной рибонуклеопортеиновыми комплексами, содержащими направляющие РНК sgRNA blaVIM-2 №93, sgRNA blaVIM-2 №95, sgRNA blaVIM-2 №207, sgRNA blaVIM-2 №285 и sgRNA blaVIM-2 №366 и белок LbCpf1, на Фиг. 3, Фиг. 4, Фиг. 5, Фиг. 6 и Фиг. 7 соответственно. Отметим, что уже на 30-ом цикле анализа (30 минут) значение сигнала, полученного в ходе детекции единичных копий (1,5 копий/реакция) гена blaVIM-2 Pseudomonas aeruginosa, превышало значение «шума» (неспецифической флуоресценции контрольного образца, не содержащего мишени) минимум втрое.

В ходе работ была оценена эффективность выявления единичных копий гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, содержащегося в составе модельной матрицы, с использованием различных направляющих РНК. Показано, что рибонуклеопротеиновые комплексы CRISPR/CAS, сформированные на основе LbCpf1 из Lachnospiraceae и направляющих РНК, выявляют единичные копии гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с различной эффективностью, и их можно расположить в следующем порядке но уменьшению активности: sgRNA blaVIM-2 №207 > sgRNA blaVIM-2 №93 > sgRNA blaVIM-2 №366 > sgRNA blaVIM-2 №285 > sgRNA blaVIM-2 №95 (Фиг. 8).

ПРИМЕР 5: ОБНАРУЖЕНИЕ ЕДИНИЧНЫХ КОПИЙ ГЕНА АНТИБИОТИКОУСТОЙЧИВОСТИ BLAVIM-2 PSEUDOMONAS AERUGINOSA С ПОМОЩЬЮ РИБОНУКЛЕОПРОТЕИНОВЫХ КОМПЛЕКСОВ CRISPR/CAS НА ОГРАНИЧЕННОЙ ПАНЕЛИ КЛИНИЧЕСКИХ ОБРАЗЦОВ

Разработанные направляющие РНК были апробированы на ограниченной панели клинических образцов (10 шт.), содержащих Pseudomonas aeruginosa, несущую ген антибиотикоустойчивости blaVIM-2 (ранее подтверждено микробиологическими методами и методом секвенирования следующего поколения).

Для обнаружения единичных копий гена антибиотикоустойчивости blaVIM-2 с помощью рибонуклеопротеиновых комплексов CRISPR/CAS была проведена предварительная амплификация фрагментов этого гена. Для проведения предварительной амплификации были подготовлены серийные (согласно Таблице 3) разведения препаратов ДНК, выделенных из клинических образцов 10 пациентов с помощью коммерчески доступного набора DNeasy Blood & Tissue Kit (QIAGEN, США) согласно инструкции производителя.

ПЦР-продукты, кодирующие фрагмент гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, получают в реакции амплификации с использованием ПЦР-смеси-2 blue (ФБУН ЦНИИ Эпидемиологии Роспотребнадзора, Россия) как описано в Примере 2, применяя описанный температурный профиль и продолжительность реакции амплификации.

Полученный таким способом материал используют в качестве матрицы для обнаружения единичных копий гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с помощью рибонуклеопротеиновых комплексов CRISPR/CAS, полученных способом, описанным в Примере 3.

Обнаружение единичных копий гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa с помощью рибонуклеопротеиновых комплексов CRISPR/CAS проводят способом, описанным в Примере 4.

В ходе проведенного анализа было показано, что рибонуклеонротеиновые комплексы CRISPR/CAS обладают способностью выявлять единичные копии (1,5 копий/реакция) гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa в препаратах ДНК, выделенных из клинических образцов. При этом уже на 2-15 цикле (2-15 минут) анализа значение сигнала превышало значение «шума» (неспецифической флуоресценции контрольного образца, не содержащего мишени) втрое, а к 5-26 циклу (5-26 минут) анализа - более чем в 5 раз (широкий диапазон и разница в циклах обусловлены различиями использованных в анализе направляющих РНК, Таблица 5). Типичные результаты анализа приведены на примерах значений флуоресценции в конечной точке (30 цикл анализа, 30 минут) для предварительно амплифицированных мишеней blaVIM-2 Pseudomonas aeruginosa (10 независимых клинических образцов), обработанных рибонуклеопортеиновыми комплексами, содержащими направляющие РНК sgRNA blaVIM-2 №93, sgRNA blaVIM-2 №95, sgRNA blaVIM-2 №207, sgRNA blaVIM-2 №285 и sgRNA blaVIM-2 №366 и белок LbCpf1, на Фиг. 9, Фиг. 10, Фиг. 11, Фиг. 12 и Фиг. 13 соответственно

Эффективность выявления единичных копий гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, содержащегося в составе препаратов ДНК, выделенных из клинических образцов, с использованием различных направляющих РНК в составе рибонуклеопротеиновых комплексов CRISPR/CAS, сформированных на основе LbCpf1 из Lachnospiraceae, можно представить в следующем порядке по убыванию: sgRNA blaVIM-2 №207 > sgRNA blaVIM-2 №93 > sgRNA blaVIM-2 №285 > sgRNA blaVIM-2 №366 > sgRNA blaVIM-2 №95 (Таблица 5).

Таким образом, разработанные направляющие РНК позволяют ультрачувствительно выявлять единичные копии гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa в клинических образцах после предварительной амплификации в составе рибонуклеопротеиновых комплексов CRISPR/CAS.

--->

Перечень последовательностей

<110> ФБУН ЦНИИ Эпидемиологии Роспотребнадзора

<120>

<160> NUMBER OF SEQ ID NO: NOS: 7

<210> SEQ ID NO: NO 1

<211> 40

<212> RNA

<213> artificial

<400> SEQUENCE 1 (sgRNA blaVIM-2 №93):

aau uuc uac uaa gug uag aug cug acu guc gga uac uca c 40

<210> SEQ ID NO: NO 2

<211> 40

<212> RNA

<213> artificial

<400> SEQUENCE 2 (sgRNA blaVIM-2 №95):

aau uuc uac uaa gug uag auu ccg uag auu cua gcg gug a 40

<210> SEQ ID NO: NO 3

<211> 40

<212> RNA

<213> artificial

<400> SEQUENCE 3 (sgRNA blaVIM-2 №207):

aau uuc uac uaa gug uag aua ugg cgc agu cua ccc guc c 40

<210> SEQ ID NO: NO 4

<211> 40

<212> RNA

<213> artificial

<400> SEQUENCE 4 (sgRNA blaVIM-2 №285):

aau uuc uac uaa gug uag auc uuc uca auc ucc gcg aga a 40

<210> SEQ ID NO: NO 5

<211> 40

<212> RNA

<213> artificial

<400> SEQUENCE 5 (sgRNA blaVIM-2 №366):

aau uuc uac uaa gug uag aua uga cga ccg cgu cgg cgg c 40

<210> SEQ ID NO: NO 6

<211> 22

<212> DNA

<213> artificial

<400> SEQUENCE 6 (For blaVIM-2):

acc gcg tct atc atg gct att g 22

<210> SEQ ID NO: NO 7

<211> 20

<212> DNA

<213> artificial

<400> SEQUENCE 7 (Rev blaVIM-2):

ctc gtt ccc ctc tac ctc gg 20

<---

1. Способ получения препарата рибонуклеопротеинового комплекса CRISPR/CAS для выявления гена антибиотикоустойчивости blaVIM-2 (металло-бета-лактамаза класс В VIM-2) Pseudomonas aeruginosa, состоящий из стадий:

(i) синтеза направляющей РНК с SEQ ID NO: 1-5;

(ii) объединения CAS-белка семейства CRISPR/CAS LbCpf1 из Lachnospiraceae в комплекс с по меньшей мере одной направляющей РНК, полученной на стадии (i); и при необходимости

(iii) лиофильной сушки рибонуклеопротеинового комплекса CRISPR/CAS, полученного на стадии (ii);

с получением, таким образом, препарата рибонуклеопротеинового комплекса CRISPR/CAS.

2. Способ по п. 1, где синтез направляющих РНК осуществляют методом in vitro транскрипции с последующим переосаждением продуктов реакции in vitro транскрипции из реакционной смеси добавлением хлорида натрия до конечной концентрации 400 mM и равного объема изопропилового спирта.

3. Способ по любому из пп. 1, 2, где непосредственно перед объединением с CAS-белком направляющую РНК прогревают при 90°С в течение 5 минут и позволяют медленно остыть до комнатной температуры, что обеспечивает формирование корректной конформации шпильки, содержащейся в направляющей РНК.

4. Препарат рибонуклеопротеинового комплекса CRISPR/CAS для выявления гена антибиотикоустойчивости blaVIM-2 Pseudomonas aeruginosa, полученный способом по любому из пп. 1-3, содержащий CAS-белок семейства CRISPR/CAS LbCpf1 из Lachnospiraceae в комплексе с по меньшей мере одной направляющей РНК с SEQ ID NO: 1-5.

5. Препарат по п. 4, где препарат представляет собой раствор указанного рибонуклеопротеинового комплекса CRISPR/CAS.

6. Препарат по п. 4, где указанный препарат лиофилизирован.



 

Похожие патенты:
Изобретение относится к области биотехнологии. Предложен способ получения библиотеки генов для диагностики патологий печени.

Изобретение относится к биотехнологии, а именно к способу определения филогенетических сублиний генотипа Beijing M. tuberculosis.

Данная группа изобретений относится к анализу нуклеиновых кислот. Предложены способы секвенирования матриц на основе нуклеиновой кислоты, которые включают предоставление массива сайтов, включающих смесь различных матриц, и достройку праймеров, которые включают различные обратимо блокирующие группы и гибридизованы с различными матрицами, что приводит к образованию различных продуктов достройки праймера, находящихся на каждом из сайтов, а также обнаружение продуктов достройки праймера и удаление обратимо блокирующих групп с продуктов достройки праймера, причем упомянутые действия повторяют с целью определения последовательности различных аналогов нуклеотидов, присоединенных к каждому из различных продуктов достройки, находящихся на каждом из сайтов, ортогональным образом.
Изобретение относится к области медицины, а именно к акушерству и гинекологии. Предложен способ прогноза осложненного течения родового акта у юных первородящих.

Изобретение относится к молекулярной онкологии. Предложен малоинвазивный способ определения чувствительности опухоли прямой кишки к лучевой терапии на основании изменения копийности генов Н2АХ и RBBP8 относительно референсного гена GAPDH методом ПЦР-РВ в присутствии красителя EVA-Green и высокоспецифичных праймеров.

Изобретение относится к биотехнологии и представляет собой набор для выявления и способ выявления метилирования гена ITGA4. Праймер и зонд, предусмотренные в настоящем изобретении, являются соответствующими, что дает возможность осуществлять выявление с использованием образца фекалий в качестве объекта, и таким образом выявление является простым, удобным и быстрым.

Изобретение относится к биотехнологии, в частности к системе для предсказания прогноза и пользы от вспомогательной химиотерапии для больных раком желудка II и III стадии, разработан алгоритм, который может предсказывать прогноз и отвечаемость на химиотерапию с использованием результатов количественного анализа уровней экспрессии мРНК группы связанных с прогнозом или отвечаемостью на химиотерапию маркерных генов и группы эталонных генов при прогрессирующем раке желудка, что может быть использовано в качестве дополнительной информации для определения способа лечения больного раком желудка.

Изобретение относится к генной инженерии. Предложен способ введения биаллельной модификации в целевой геномный локус с использованием системы CRISPR/Cas9, включающий введение Cas9, двух гидовых РНК и нацеливающего вектора, содержащего полинуклеотидную вставку, фланкированную 5' гомологичным плечом, которое гибридизуется с целевой 5'-последовательностью в пределах целевого геномного локуса, и 3' гомологичным плечом, которое гибридизуется с целевой 3'-последовательностью в пределах целевого геномного локуса.

Группа изобретений относится к определению продукции нейтрализующих антител у субъектов, проходящих лечение болезни Гоше. Раскрыт способ детекции нейтрализующего антитела против глюкоцереброзидазы в образце от субъекта, включающий иммобилизацию глюкоцереброзидазы на поверхность; приведение образца в контакт с иммобилизованной глюкоцереброзидазой; стадию промывки; добавление меченой глюкоцереброзидазы; стадию промывки для удаления меченой глюкоцереброзидазы, которая не связалась с антителом против глюкоцереброзидазы; обнаружение и количественную оценку метки; оценку присутствия специфического изотипа антитела против глюкоцереброзидазы, где изотип выбран из группы, состоящей из IgG, IgM, IgA и IgE, и определение, нейтрализует ли антитело против глюкоцереброзидазы активность глюкоцереброзидазы, с использованием клеток, которые экспрессируют человеческие рецепторы макрофагов против маннозы (MMR).
Изобретение относится к области биотехнологии. Предложен способ прогнозирования эффективности неоадъювантной химиолучевой терапии при аденокарциноме прямой кишки.

Изобретение относится к биотехнологии, а именно генной инженерии. Предложены способ получения рекомбинантного капсидного белка вируса гепатита Е (PORF2) и рекомбинантная вакцина для профилактики вирусного гепатита Е.
Наверх