Цифроаналоговый преобразователь



Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
Цифроаналоговый преобразователь
H03M1/66 - Кодирование, декодирование или преобразование кода вообще (с использованием гидравлических или пневматических средств F15C 4/00; оптические аналого-цифровые преобразователи G02F 7/00; кодирование, декодирование или преобразование кода, специально предназначенное для особых случаев применения, см. в соответствующих подклассах, например G01D,G01R,G06F,G06T, G09G,G10L,G11B,G11C;H04B, H04L,H04M, H04N; шифрование или дешифрование для тайнописи или других целей, связанных с секретной перепиской, G09C)

Владельцы патента RU 2744475:

Федеральное государственное казенное военное образовательное учреждение высшего образования "Военный учебно-научный центр Военно-воздушных сил "Военно-воздушная академия имени профессора Н.Е. Жуковского и Ю.А. Гагарина" (г. Воронеж) Министерства обороны Российской Федерации (RU)

Изобретение относится к области автоматики, информационно-измерительной и вычислительной техники, и может быть использовано для преобразования модулярного и позиционного кода в аналоговый электрический сигнал. Технический результат заключается в обеспечении возможности формировать аналоговый эквивалент входной цифровой величины, заданной как в модулярном, так и позиционном представлении. Сущность изобретения сводится к промежуточному преобразованию цифрового модулярного или позиционного кода в дискретно-фазированную форму представления чисел в системе остаточных классов с дальнейшим переходом к выходному аналоговому эквиваленту в виде тока или напряжения. 2 ил.

 

Изобретение относится к области автоматики, информационно-измерительной и вычислительной техники, и может быть использовано для преобразования модулярного кода в аналоговый электрический сигнал.

Известно устройство (пат. 2253943 С1 Российская Федерация, МПК Н03М1/66 (2006.01). заявл. 22.12.2003; опубл. 10.06.2005.), содержащее информационные входы, устройства отображения, генератор гармонического колебания, фазовращатель на угол π/2, управляемые фазовращатели, аналоговый перемножитель, интегратор, выход. Недостаток - низкие функциональные возможности.

Известно устройство (пат. 2289881 С1 Российская Федерация, МПК Н03М1/66 (2006.01). заявл. 19.07.2005; опубл. 20.12.2006.), содержащее информационные входы, генератор гармонического колебания, управляемые фазовращатели, фазовращатель на угол π/2, аттенюатор, балансный фазовый детектор, выход. Недостаток - низкие функциональные возможности.

Наиболее близким к заявляемому является изобретение (пат. 2290754 Российская Федерация, МПК Н03М1/66 (2006.01). заявл. 11.07.2005; опубл. 27.12.2006), содержащее информационные входы вычетов, генератор гармонического колебания, управляемые фазовращатели, фазовращатель на угол π/2, аттенюатор, балансный фазовый детектор, выход. Недостаток - низкие функциональные возможности, определенные алгоритмом преобразования только модулярного цифрового кода.

Техническая задача, на решение которой направлено заявляемое устройство, состоит в реализации универсального способа формирования выходного аналогового эквивалента входной цифровой величины, заданной как в модулярном, так и позиционном представлении.

Технический результат выражается в расширении функциональных возможностей.

Технический результат достигается тем, что в цифроаналоговый преобразователь, содержащий n входов вычетов устройства, где n - количество оснований системы остаточных классов, n управляемых фазовращателей, генератор гармонического колебания, первый фазовращатель на угол π/2, выход устройства, введены позиционный вход устройства, первая и вторая группы из n блоков умножения фазы, n блоков памяти, сумматор фаз, второй фазовращатель на угол π/2, первый и второй аналоговые перемножители, первый и второй фильтры низких частот, вход постоянного сигнала устройства, сумматор сигналов, при этом выход генератора гармонического колебания соединен с первыми входами управляемых фазовращателей, первыми входами блоков умножения фазы первой и второй группы, первым входом сумматора фаз, вторыми входами первого и второго аналоговых перемножителей, выходы которых соединены с входами соответствующих фильтров низких частот, выходы которых соответственно соединены с вторым и третьим входами сумматора сигналов, при этом вход постоянного сигнала устройства объединен с первым входом сумматора сигналов, выход которого объединен с выходом устройства, позиционный вход устройства объединен с третьими входами блоков умножения фазы первой группы, выходы блоков памяти соединены с третьими входами соответствующих блоков умножения фазы второй группы, при этом входы вычетов устройства объединены с вторыми входами соответствующих управляемых фазовращателей, выходы которых соединены с вторыми входами соответствующих блоков умножения фазы первой группы, выходы которых соединены с вторыми входами соответствующих блоков умножения фазы второй группы, при этом выход i-го блока умножения фазы второй группы соединен с i+1-ым входом сумматора фаз, выход которого соединен с входом первого фазовращателя на угол π/2, выход которого соединен с первым входом первого аналогового перемножителя, а также через второй фазовращатель на угол π/2 соединен с первым входом второго аналогового перемножителя.

На фиг.1 представлена структурная схема цифроаналогового преобразователя.

На фиг.2 приведены две функциональные зависимости для значений угла в первой координатной четверти.

Сущность изобретения сводится к промежуточному преобразованию цифрового модулярного или позиционного кода в дискретно-фазированную форму представления чисел в системе остаточных классов с дальнейшим переходом к выходному аналоговому эквиваленту в виде тока или напряжения. Пусть задана система остаточных классов по взаимно простым основаниям p1, … pn с объемом чисел , тогда модулярная форма числа Α=(γ1, … γn) через управляемые фазовращатели или позиционное двоичное представление А через дополнительную функцию блоков умножения фазы (патент РФ №2653310) преобразуется в дискретные фазы 2π⋅γj/pj гармонических сигналов одной частоты. В первом случае управляемые фазовращатели из унитарного кода вычетов формируют набег фазы. Несмотря на то, что данная операция осуществляется на линиях задержки, где результатом является величина с отрицательным знаком, в силу периодичности гармоники и табличного способа коммутации ключей в самом блоке (патент РФ №2253943, фиг.2) возможно сформировать любой положительный сдвиг фазы. На первых блоках умножения фазы осуществляется операция, где в качестве операндов выступают сигналы от фазовращателей и двоичный код соответствующий "1". Во втором случае - набор фаз, соответствующий "1" в формате выбранной системы остаточных классов, и двоичный код преобразуемого числа А. Далее посредством суммирования формируется единый фазовый эквивалент числа А:

где μj - вес ортогонального базиса, полученный из решения сравнения . Реализация арифметических операций выражения (1)

осуществляется (фиг.1) блоками умножения фазы 6.1-6.n (патент РФ №2653310) и сумматором фаз 8 (патент РФ №2653312). Формирование на выходе аналогового эквивалента для входной цифровой величины определяется функциональной зависимостью (фиг.2):

где ϕ - угол, изменяющийся в пределах от 0 до π/2. Такое ограничение фазы отражается в возможности использования чисел только из первой четверти диапазона (А≤Р/4), но дает максимальное отклонение от идеальной линейной характеристики около 2.1%, что в разы лучше, чем у прототипа. Формирование составных частей выходного аналогового эквивалента числа А осуществляется через низкочастотную фильтрацию результата перемножения тональных гармоник с аргументами α=ωt+ϕ и β=ωt.:

Полученные составные части складываются с постоянным уровнем сигнала, равным половине амплитуды используемых тональных гармоник, что приводит к выполнению выражения (2). Таким образом, реализуется заявленное расширение функциональных возможностей.

Следует заметить, что разветвление сигнальных линий СВЧ на фиг.1 должно сопровождаться наличием делителя мощности и усилителей для увеличения амплитуды гармоник до единичного значения, но для упрощения схемы данные элементы опущены.

Дополнительным эффектом является повышение точности преобразования, что, как было замечено выше, в разы лучше, чем у прототипа.

Показанный на фиг.1 цифроаналоговый преобразователь содержит генератор гармонического колебания 1, входы вычетов устройства 2.1-2.n, позиционный вход устройства 3, управляемые фазовращатели 4.1-4.n, первая группа блоков умножения фазы 5.1-5.n, вторая группа блоков умножения фазы 6.1-6.n, блоки памяти 7.1-7.n, сумматор фаз 8, первый и второй фазовращатель на угол π/2 9, первый и второй аналоговые перемножители 10, вход постоянного сигнала 11, первый и второй фильтры низких частот 12, сумматор сигналов 13, выход устройства 14.

Выход генератора гармонического колебания 1 соединен с первыми входами управляемых фазовращателей 4.1-4.n, первыми входами блоков умножения фазы 5.1-5.n и 6.1-6.n, первым входом сумматора фаз 8, вторыми входами первого и второго аналоговых перемножителей 10, выходы которых соединены с входами соответствующих фильтров низких частот 12, выходы которых соответственно соединены с вторым и третьим входами сумматора сигналов 13, при этом вход постоянного сигнала устройства 11 объединен с первым входом сумматора сигналов 13, выход которого объединен с выходом устройства 14, позиционный вход устройства 3 объединен с третьими входами блоков умножения фазы 5.1-5.n, выходы блоков памяти 7.1-7.n соединены с третьими входами соответствующих блоков умножения фазы 6.1-6.n, при этом входы вычетов устройства 2.1-2.n объединены с вторыми входами соответствующих управляемых фазовращателей 4.1-4.n, выходы которых соединены с вторыми входами соответствующих блоков умножения фазы 5.1-5.n, выходы которых соединены с вторыми входами соответствующих блоков умножения фазы 6.1-6.n, при этом выход блока умножения фазы 6.i соединен с i+1-м входом сумматора фаз 8, выход которого соединен с входом первого фазовращателя на угол π/2 9, выход которого соединен с первым входом первого аналогового перемножителя 10, а также через второй фазовращатель на угол π/2 9 соединен с первым входом второго аналогового перемножителя 10.

Работа устройства осуществляется в двух режимах: преобразование модулярного или позиционного кода. Пусть задана система остаточных классов по n взаимно простым основаниям p1, … pn с объемом чисел , тогда в первом случае модулярная форма числа А=(γ1, … γn), при условии что А≤Р/4, подается на входы вычетов 2.1-2.n. В то же время на позиционный вход устройства 3 подается двоичный код соответствующий "1". Тональный сигнал от генератора гармонического колебания 1 с нулевой начальной фазой разбивается на отдельные гармоники и подается на первые входы управляемых фазовращателей 4.1-4.n, где формируются соответствующие набеги фаз 2π⋅γj/pj . После умножения на "1" на блоках 5.1-5.n все готово для окончательного преобразования к аналоговому выходному эквиваленту. Во втором случае на входы вычетов 2.1-2.n подаются значения остатков соответствующие "1": (1, … 1), что приводит к формированию набегов фаз равных 2π/pj, а на позиционный вход устройства - двоичное представление числа , где β - разряды числа ("0" или "1"), а к определяется как наименьшее при выполнении условия 2k>Р/4. Умножение на блоках 5.1-5.n соответствует равенству:

Поскольку определена система остаточных классов, то известны и коэффициенты uj для выражения (1). Полученные любым вариантом исходные набеги фаз преобразуются на блоках 6.1-6.n и сумматоре 8 в единый эквивалент числа Α: ϕ. Далее на блоках 10 происходит перемножение сигналов так, что за счет фазовращателей 9 на первый из них гармоника приходит с дополнительной задержкой -π/2, а на второй - -π. После чего осуществляется низкочастотная фильтрация на 12, что соответствует выполнению выражений (3) и (4). Сложение на 13 с постоянной со входа 11 величиной сигнала (тока или напряжения) приводит к реализации выражения (2) и формированию на выходе 14 аналогового эквивалента входной цифровой величины.

Пример.

Пусть задана система остаточных классов по четырем взаимно простым основаниям 3, 5, 7 и 4 с объемом чисел , тогда в первом случае модулярная форма числа А=37=(1, 2, 2, 1), при условии, что А≤Р/4 (37<105), подается на входы вычетов 2.1-2.4. В то же время на позиционный вход устройства 3 подается двоичный код соответствующий "1". Тональный сигнал от генератора гармонического колебания 1 с нулевой начальной фазой разбивается на отдельные гармоники и подается на первые входы управляемых фазовращателей 4.1-4.4, где формируются соответствующие набеги фаз 2π⋅γj/pj 2π⋅1/3, 2π⋅2/5, 2π⋅2/7, 2π⋅1/4. После умножения на "1" на блоках 5.1-5.4 все готово для окончательного преобразования к аналоговому выходному эквиваленту. Во втором случае на входы вычетов 2.1-2.4 подаются значения остатков соответствующие "1": (1,1,1,1), что приводит к формированию набегов фаз равных 2π/pj: 2π/3, 2π/5, 2π/7, 2π/4, а на позиционный вход устройства - двоичное представление числа Α=37=0⋅26+1⋅25+0⋅24+0⋅23+1⋅22+0⋅21+1-20, где k=7, поскольку определяется как наименьшее при условии 2k>Р/4 (27>105). Умножение на блоках 5.1-5.4 соответствует равенствам:

Поскольку определена система остаточных классов, то известны и коэффициенты μj для выражения (1): μ1=2, μ2=4, μ3=2, μ4=1. Полученные любым вариантом исходные набеги фаз преобразуются на блоках 6.1-6.4 и сумматоре 8 в единый эквивалент числа А:

Далее на блоках 10 происходит перемножение сигналов так, что за счет фазовращателей 9 на первый из них гармоника приходит с дополнительной задержкой -π/2, а на второй - -π. После чего осуществляется низкочастотная фильтрация на 12, что соответствует выполнению выражений (3) и (4):

Сложение на 13 с постоянной со входа 11 величиной сигнала (тока или напряжения) приводит к реализации выражения (2) и формированию на выходе 14 аналогового эквивалента входной цифровой величины:

Для оценки второго положительного эффекта реализации устройства - точности преобразования - сравним результат с идеальной величиной, полученной как деление числа А=37 на объем применяемых чисел Р/4=105: 37/105=0.3524. Расхождение составляет 1.5%, что укладывается в заявленную точность.

Полученное устройство отражает принципы построения ЦАП на основе свойств системы остаточных классов. С точки зрения практического применения преобразователь реализует возможность вывода информации в аналоговой форме из цифровых модулярных и позиционных двоичных вычислительных структур с максимально возможным быстродействием.

Цифроаналоговый преобразователь, содержащий n входов вычетов устройства, где n - количество оснований системы остаточных классов, n управляемых фазовращателей, генератор гармонического колебания, первый фазовращатель на угол π/2, выход устройства, отличающийся тем, что введены позиционный вход устройства, первая и вторая группы из n блоков умножения фазы, n блоков памяти, сумматор фаз, второй фазовращатель на угол π/2, первый и второй аналоговые перемножители, первый и второй фильтры низких частот, вход постоянного сигнала устройства, сумматор сигналов, при этом выход генератора гармонического колебания соединен с первыми входами управляемых фазовращателей, первыми входами блоков умножения фазы первой и второй группы, первым входом сумматора фаз, вторыми входами первого и второго аналоговых перемножителей, выходы которых соединены с входами соответствующих фильтров низких частот, выходы которых соответственно соединены с вторым и третьим входами сумматора сигналов, при этом вход постоянного сигнала устройства объединен с первым входом сумматора сигналов, выход которого объединен с выходом устройства, позиционный вход устройства объединен с третьими входами блоков умножения фазы первой группы, выходы блоков памяти соединены с третьими входами соответствующих блоков умножения фазы второй группы, при этом входы вычетов устройства объединены с вторыми входами соответствующих управляемых фазовращателей, выходы которых соединены с вторыми входами соответствующих блоков умножения фазы первой группы, выходы которых соединены с вторыми входами соответствующих блоков умножения фазы второй группы, при этом выход i-го блока умножения фазы второй группы соединен с i+1-м входом сумматора фаз, выход которого соединен с входом первого фазовращателя на угол π/2, выход которого соединен с первым входом первого аналогового перемножителя, а также через второй фазовращатель на угол π/2 соединен с первым входом второго аналогового перемножителя.



 

Похожие патенты:

Изобретение относится к области автоматики, информационно-измерительной и вычислительной техники и может быть использовано для преобразования модулярного кода в аналоговый электрический сигнал.

Изобретение относится к измерительной технике и технике автоматического регулирования. Технический результат заключается в повышении точности преобразования синусно-косинусного сигнала в код угла при обеспечении высокого быстродействия преобразования, характерного для следящих систем.

Изобретение относится к измерительной технике и технике автоматического регулирования, в частности к преобразователям угла в код, и может быть использовано в системах, где требуется измерять положение с высокой точностью.

Изобретение относится к области цифровой техники, в частности к устройствам преобразования аналогового напряжения в цифровой код. Технический результат - усиление полезного сигнала, исключение регистрации аддитивных помех, увеличение быстродействия.

Группа изобретений относится к области измерительной технике и может быть использована в приборостроении для преобразования напряжения в цифровой код. Техническим результатом является повышение разрешающей способности устройства.

Заявленное решение относится к устройствам цифро-аналогового преобразования. Технический результат - уменьшение потребляемой мощности.

Изобретение относится к системам беспроводной связи. Технический результат заключается в повышении помехоустойчивости и скорости передачи цифровой информации.

Изобретение относится к измерительной технике, автоматике и может быть использовано при создании высокоточных аналого-цифровых преобразователей, датчиков перемещений и систем контроля параметров изделий электронной техники.

Изобретение относится к технике преобразования электрических сигналов. Технический результат заключается в повышении точности преобразования аналоговой величины.

Изобретение относится к измерительной технике, в частности к аналого-цифровым преобразователям и может быть использовано в цифровых системах для измерения аналоговых величин.

Изобретение относится к области автоматики, информационно-измерительной и вычислительной техники и может быть использовано для преобразования модулярного кода в аналоговый электрический сигнал.
Наверх