Сверхширокополосный планарный излучатель

Изобретение относится к антенной технике, в частности к сверхширокополосным планарным антеннам. Техническим результатом является увеличение ширины пропускания планарного излучателя до двукратного перекрытия рабочих частот. Технический результат достигается тем, что внутренняя жила коаксиальной линии соединена при помощи микрополосковой линии с металлизацией, выполненной в виде замкнутой рамки, расположенной на верхнем слое печатной платы, а внешний экран коаксиальной линии соединён с металлизацией, расположенной на нижнем слое печатной платы и повторяющей форму внутреннего контура верхнего слоя металлизации, при этом между верхним и нижним слоями металлизации печатной платы образован зазор, регулируемый толщиной печатной платы и расстоянием между внутренними торцами верхнего слоя металлизации и нижнего слоя металлизации, а рефлектор, расположенный на расстоянии, близком к четверти длины волны середины диапазона от печатной платы, образует пространство, заполненное диэлектрическим материалом или слоем воздуха. 3 з.п. ф-лы, 7 ил.

 

Область техники, к которой относится изобретение

Изобретение относится к области антенной техники, а именно к планарным, сверхширокополосным антеннам и предназначено для использования в качестве элемента активных фазированных антенных решёток (АФАР) с углом сканирования до 50° или в качестве облучателя зеркальных антенн.

Уровень техники

Известна широкополосная микрополосковая антенна с трапецеидальным поперечным сечением (патент RU 2479080, МПК H01Q1/38, опубл. 10.04.2011). Излучающий элемент антенны содержит прямоугольный излучатель, размещённый над экранирующей поверхностью с Н-образной щелью и возбуждаемый микрополосковой линией со шлейфом, который изогнут в направлении излучения микрополосковой антенны таким образом, что в поперечном сечении имеет трапецеидальную форму, симметричную относительно плоскости симметрии микрополосковой антенны, проходящей через оси симметрии прямоугольного металлического экрана с Н-образной щелью.

Недостатком технического решения является увеличенный продольный размер из-за наличия изогнутого в направлении излучения шлейфа.

Известна широкополосная микрополосковая антенна (патент RU 2576592, МПК H01Q1/38, опубл. 10.03.2016), которая состоит из диэлектрической подложки прямоугольной формы; излучающей панели располагающейся на верхней поверхности диэлектрической подложки; соединительной панели на верхней поверхности диэлектрической подложки, отходящую от края диэлектрической подложки и заканчивающуюся на заданном расстоянии от излучающей панели; металлическую опору на нижней поверхности диэлектрической подложки, идущей от края нижней поверхности диэлектрической пластины вниз к заземлению; слой воздуха заданной толщины, образуемый между нижней поверхностью диэлектрической подложки и заземления.

Техническое решение обеспечивает ширину полосы согласования по уровню отраженной мощности – 10 дБ не более 30%, что является недостаточным для решения ряда современных задач в области радиовидения/зондирования и астрофизических исследований.

Известна также антенна верхнего питания, близкая по принципу работы (патент RU 2061985, МПК H01Q1/36, опубл. 10.06.1996). Антенна верхнего питания содержит вертикальный проводник, трубчатое основание, изолятор между ними, согласующий блок, состоящий из нижнечастотного и верхнечастотного согласующих устройств, входную линию передачи и установленную на горизонтальном экране дополнительно, между этим экраном и трубчатым основанием введены изолятор и выключатель, нижнечастотное согласующие устройство согласующего блока вынесено из внутренней полости трубчатого основания, установлено на горизонтальном экране и связано с выходной линией передачи антенны отрезком линии связи, при этом входная линия передачи образованна внутренней поверхностью трубчатого основания и дополнительным центральным проводником.

Основными недостатками антенны являются большие габариты, задаваемые длиной вертикального проводника, а также сложность или отсутствие возможности реализации в сантиметровом и миллиметровом диапазонах соответственно из-за наличия сосредоточенных согласующих элементов, резонансные частоты которых ограничивают их применение.

Известен сверхширокополосный облучатель с высоким коэффициентом эллиптичности (патент RU 163383, МПК H01Q 21/00 опубл. 25.01.2016), который содержит печатную дипольную антенну турникетного типа, выполненную на кварцевой подложке, содержащий скрещенные несимметричные диполя в форме лепестка, расположенный горизонтально над поверхностью рефлектора. Каждый несимметричный диполь снабжен реактивным шлейфом. Реактивный шлейф и несимметричный диполь соединены металлическим переходом, а на пересечении осей несимметричных диполей расположена металлическая втулка, к которой прикреплена полиимидная шайба.

Данная полезная модель является наиболее близким аналогом по конструктивным признакам и техническим характеристикам. Недостатками являются отсутствие возможности использования облучателя в качестве элемента сканирующей антенной решётки из-за относительно большого габарита, что не позволяет обеспечить необходимый шаг решётки, и наличие не одной, а двух точек включения, запитанных в противофазе для функционирования облучателя в режиме линейной поляризации.

Сущность изобретения

Техническая задача направлена на создание компактной сверхширокополосной антенны, пригодной для использования в качестве элементарной ячейки АФАР и облучателя зеркальных антенн.

Техническим результатом предложенного решения является увеличение ширины пропускания планарного излучателя до двукратного перекрытия рабочих частот.

Существуют различные способы расширения полосы пропускания антенн, в частности, полосы согласования путём уменьшения волнового сопротивления или снижения значения реактивной составляющей комплексного входного сопротивления, при этом с целью улучшения частотной стабильности направленных характеристик требуется постоянство резонансной частоты, обратно пропорциональной квадратному корню из произведения ёмкости и индуктивности СВЧ структуры.

Суть предлагаемого технического решения заключается в том, что сверхширокополосный планарный излучатель включает коаксиальную линию, экран коаксиальной линии, рефлектор, при этом согласно изобретению коаксиальная линия подключена к топологии двухслойной печатной платы заданной толщины, расположенной над рефлектором на расстоянии близком к четверти длины волны центральной частоты рабочего диапазона, причём внутренняя жила коаксиальной линии соединена посредством микрополосковой линии с верхним слоем металлизации, выполненной в виде замкнутой рамки, а внешний экран увеличенного радиуса коаксиальной линии соединен с нижним слоем металлизации печатной платы, повторяющим форму внутреннего контура верхнего слоя, верхний слой и нижний слой металлизации образуют зазор, регулирующийся толщиной печатной платы и расстоянием межу внутренними торцами верхнего и нижнего слоя металлизаций соответственно.

Замкнутая рамка верхнего слоя металлизации может быть выполнена округлой формы определенного радиуса и ширины или квадратной формы определенной длины и ширины.

Пространство между печатной платой и рефлектором может быть заполнено диэлектрическим материалом или слоем воздуха.

Использование коаксиальной линии с внешним экраном увеличенного радиуса позволяет расширить полосу согласования вследствие уменьшения волнового сопротивления излучателя.

Расположение двухслойной печатной платы над рефлектором обеспечивает формирование основного лепестка диаграммы направленности (ДН) в одном полупространстве, при этом величина их разноса определяет как частотную зависимость направленных характеристик, так и импедансных свойств по причине влияния проводящей поверхности на значение реактивной мощности вблизи излучателя.

Соединение внутренней жилы коаксиальной линии посредством микрополосковой линии с верхним слоем металлизации, выполненной в виде замкнутой рамки, и соединение внешнего экрана с нижним слоем металлизации, повторяющей внутренний контур верхнего слоя металлизации, выполненной в виде замкнутой рамки, образуют планарный излучатель со стабильными электрическими характеристиками в сверхширокой полосе частот по типу антенны верхнего питания. Осуществление возбуждения в одной точке верхнего слоя металлизации, выполненной в виде замкнутой рамки, через микрополосковую линию применяется с целью формирования поля излучения линейной поляризации, в двух точках – с целью формирования поля излучения круговой поляризации.

Выбор размеров металлизации, выполненной в виде замкнутой рамки, задаёт частотную область формирующейся ДН.

Наличие зазора между верхним слоем металлизации, выполненной в виде замкнутой рамки, и нижним слоем металлизации, обеспечивает ёмкостной характер части реактивной мощности, запасённой вблизи излучателя, при этом пересечение зазора микрополосковой линией обеспечивает индуктивный характер части реактивной мощности, что в совокупности с коаксиальной линией образует СВЧ структуру, которую можно рассматривать как комбинацию электрического и магнитного диполей, суммарная энергия которых минимизирует значение реактивной мощности в ближней зоне, тем самым расширяя полосу согласования. Значение зазора грубо регулируется толщиной печатной платы и плавно – расстоянием межу внутренними торцами верхнего слоя металлизации, выполненной в виде замкнутой рамки, и нижнего слоя металлизаций,

Планарное исполнение излучателя улучшает частотную стабильность положения фазового центра в отличие от протяжённых СВЧ структур типа излучателей вивальди или конических спиралей, что крайне важно для облучателей зеркальных антенн.

Краткое описание чертежей

На фиг. 1 изображено поперечное сечение излучателя, фиг. 2 отображает конструкцию излучателя линейной поляризации, где пространство до рефлектора заполнено диэлектриком, фиг. 3 отображает конструкцию излучателя круговой поляризации, где пространство до рефлектора воздушное, фиг. 4 содержит частотную зависимость амплитуды коэффициента отражения, фиг. 5 содержит ДН в Е-плоскости излучателя линейной поляризации, фиг. 6 содержит ДН в Н-плоскости излучателя линейной поляризации, фиг. 7 содержит ДН излучателя круговой поляризации.

Осуществление изобретения

Сверхширокополосный планарный излучатель содержит коаксиальную линию, внутренняя жила 1 которой соединена при помощи микрополосковой линии 2 с металлизацией, выполненной в виде замкнутой рамки 3, расположенной на верхнем слое печатной платы 4. Внешний экран коаксиальной линии 5 соединён с металлизацией 6, расположенной на нижнем слое печатной платы 4 и повторяющей форму внутреннего контура верхнего слоя металлизации, выполненной в виде замкнутой рамки 3. Внешний экран 5 коаксиальной линии выполнен увеличенного радиуса, который задается в зависимости от требуемой полосы согласования. Щель 7 образована зазором между верхним слоем металлизации, выполненной в виде замкнутой рамки 3, и нижним слоем металлизации 6 печатной платы 4. Зазор регулируется толщиной печатной платы 4 и расстоянием межу внутренними торцами верхнего слоя металлизации, выполненной в виде замкнутой рамки 3, и нижнего слоя металлизации 6. Рефлектор 8, расположенный на расстоянии близком к четверти длины волны середины диапазона от печатной платы 4, образует пространство 9, заполненное диэлектрическим материалом или слоем воздуха.

Работа устройства

На вход коаксиальной линии подается СВЧ сигнал, который через микрополосковую линию 2 поступает на верхний слой металлизации, выполненной в виде замкнутой рамки 3, при этом происходит возбуждение щели 7. В точке включения микрополосковой линии 2, сигнал делится в соотношении 1:1, при этом на начальном отрезке пути две волны тока имеют противоположные направления, поэтому две соответствующие кромки металлизации, выполненной в виде замкнутой рамки 3, не излучают. При дальнейшем распространении две волны тока разделённого сигнала становятся сонаправленными, таким образом, определяя ориентацию линейной поляризации поля излучения.

В случае использования верхнего слоя металлизации, выполненной в виде замкнутой рамки 3 округлой формы, поляризационная развязка поля излучения в секторе углов ширины ДН ухудшается по сравнению со случаем использования квадратной формы ввиду наличия непараллельных отрезков путей распространения волн тока, формирующих кросс компоненты поля излучения.

При возбуждении верхнего слоя металлизации, выполненной в виде замкнутой рамки 3, в двух точках, расположенных по центру перпендикулярных сторон, сигналами, находящимися в квадратуре и равной амплитуды, формируется поле излучения круговой поляризации. Ширина полосы пропускания по критерию некоторого минимального значения коэффициента эллиптичности определяется способом и устройством, задающими соответствующие амплитудно-фазовые соотношения.

1. Сверхширокополосный планарный излучатель, включающий коаксиальную линию, экран коаксиальной линии, рефлектор, отличающийся тем, что коаксиальная линия подключена к топологии двухслойной печатной платы заданной толщины, расположенной над рефлектором на расстоянии, близком к четверти длины волны центральной частоты рабочего диапазона, при этом внутренняя жила коаксиальной линии соединена посредством микрополосковой линии с верхним слоем металлизации, выполненной в виде замкнутой рамки, а внешний экран коаксиальной линии соединен с нижним слоем металлизации печатной платы, повторяющим форму внутреннего контура верхнего слоя, верхний слой и нижний слой металлизации образуют зазор, регулирующийся толщиной печатной платы и расстоянием межу внутренними торцами верхнего и нижнего слоя металлизаций соответственно.

2. Сверхширокополосный планарный излучатель по п.1, отличающийся тем, что замкнутая рамка верхнего слоя металлизации выполнена округлой формы определенного радиуса и ширины.

3. Сверхширокополосный планарный излучатель по п.1, отличающийся тем, что замкнутая рамка верхнего слоя металлизации выполнена квадратной формы определенной длины и ширины.

4. Сверхширокополосный планарный излучатель по п.1, отличающийся тем, что пространство между печатной платой и рефлектором заполнено диэлектрическим материалом или слоем воздуха.



 

Похожие патенты:

Изобретение относится к антенной технике и предназначено для использования в приемопередающих активных фазированных антенных решетках (АФАР). Технический результат - снижение высоты профиля антенной решетки.

Использование: в радиолокационных станциях (РЛС) с активными фазированными антенными решетками (АФАР) при цифровом формировании диаграмм направленности (ДН) как на передачу, так и на прием при применении в качестве зондирующих импульсных широкополосных линейно-частотно-модулированных (ЛЧМ) сигналов и при широкоугольном электронном сканировании диаграммы направленности.

Изобретение относится к антенной технике и предназначено для построения активных фазированных антенных решеток (АФАР) для систем радиосвязи и радиолокации. При этом размещают антенные элементы на передних панелях многоканальных приемопередающих модулей в узлах прямоугольной или треугольной сетки, с шагом по вертикали и горизонтали, определяемым требуемым сектором сканирования, соответственно, в вертикальной и горизонтальной плоскостях, соединяют каждый излучатель со входом-выходом одного из каналов многоканального приемопередающего модуля, формируют антенное полотно активной фазированной антенной решетки из многоканальных приемопередающих модулей, устанавливая их рядом друг с другом таким образом, чтобы поверхности их передних панелей были расположены в одной плоскости, а расстояние между излучателями сохранялось неизменным в вертикальной и горизонтальной плоскостях, при этом передние панели приемопередающих модулей выполняют функцию экрана, формируют сигнал гетеродина и распределяют его на многоканальные приемопередающие модули, в режиме передачи формируют передающую диаграмму направленности с заданной формой путем установки фазовых и амплитудных соотношений передаваемого сигнала в каналах приемопередающих модулей, в режиме приема усиливают принимаемые сигналы, преобразуют по частоте, выполняют дискретизацию сигнала на промежуточной частоте с выхода приемной части каждого канала приемопередающего модуля и формируют из полученных отсчетов требуемое число лучей приемной диаграммы направленности путем весового суммирования сигналов в системе цифрового диаграммообразования.

Изобретение относится к антенной технике и предназначено для использования в фазированных антенных решетках (ФАР) для построения излучающей системы ФАР. Согласно способу располагают диэлектрические подложки прямоугольной формы с линейками печатных вибраторов над проводящим экраном, устанавливают диэлектрические подложки таким образом, чтобы их плоскости были расположены параллельно друг другу и перпендикулярно проводящему экрану, а печатные вибраторы были расположены эквидистантно в узлах прямоугольной сетки, при этом устанавливают расстояние dY между соседними диэлектрическими подложками по оси Y из условия обеспечения требуемого сектора сканирования в плоскости Y, а расстояние dX между печатными вибраторами по оси X из условия обеспечения требуемого сектора сканирования в плоскости X, выполняют запитку каждого печатного вибратора с помощью полосковой линии, которую подключают к внешнему фидеру.

Изобретение относится к антенной решетке. Антенная решетка для определения координат радиолокационной цели, содержащая N излучающих элементов 4.1-4.N, где N - число используемых частотных поддиапазонов, причем расстояние между смежными излучающими элементами выбирают равным половине длины волны, соответствующей максимальной частоте диапазона используемых частот, излучающие элементы располагают так, чтобы сигналы различных частотных поддиапазонов были распределены по номерам излучающих элементов от 1-го до N-го по некоторому закону, N аналоговых приемников 5.1-5.N, N аналогово-цифровых преобразователей 6.1-6.N, устройство хранения результатов измерений 7, имеющее N+1 входов и Q=N×P выходов, где Р - число частот в одном поддиапазоне, вычислительное устройство 8, имеющее Q выходов, Q умножителей 9.1-9.N, имеющих по два входа, суммирующее устройство 10, имеющее Q входов, устройство управления 11, имеющее 4 выхода, и устройство отображения результатов измерений 12, отличающаяся тем, что в ней система формирования когерентной сетки эквидистантно расстроенных частот заменена на формирователь 1 такой сетки частотных поддиапазонов ΔF1, ΔF2,…,ΔFN, что каждая частота ƒij ≠ kƒnl, k ∈ Z; i, ; j, , имеющий N выходов, введены N широкополосных цифроаналоговых преобразователей 2.1-2.N, входы которых соединены с соответствующими выходами формирователя 1, введены N устройств 3.1-3.N, осуществляющих переключение каналов передачи и приема сигналов, соединенных с соответствующими выходами цифроаналоговых преобразователей 2.1-2.N, выходы которых соединены с соответствующими N излучающими элементами 4.1-4.N, другие выходы которых подключены к соответствующим входам N аналоговых приемников 5.1-5.N, выходы которых соединены с соответствующими входами N аналогово-цифровых преобразователей 6.1-6.N, выходы каждого из которых подключены к соответствующим N входам устройства хранения результатов измерений 7, Q выходов которого подключены к соответствующим входам Q умножителей 9.1-9.N, выходы которых подключены к соответствующим Q входам суммирующего устройства 10, выход которого подсоединен к устройству управления 11, один из выходов которого соединен с устройством отображения результатов измерений 12, другие выходы устройства управления 11 подключены к соответствующим входам устройства хранения результатов измерений 7, вычислительного устройства 8, Q выходов которого подсоединены к Q умножителям, и формирователя 1 сетки частотных поддиапазонов ΔF1, ΔF2,…,ΔFN, N выходов которого соединены с соответствующими входами N цифроаналоговых преобразователей 2.1-2.N.

Изобретение относится к области радиоэлектроники и может быть использовано для продления срока службы радиокомплексов. Технический результат настоящего изобретения - обеспечение восстановления проектных ДН плоских ФАР лишь на основе знания проектных параметров плоской ФАР и вида деформированной ДН.

Изобретение относится к радиоэлектронным устройствам, а именно к конструкции приемопередающих модулей активных фазированных антенных решеток СВЧ-диапазона. Сущность изобретения заключается в том, что приемопередающий модуль активной фазированной антенной решетки СВЧ-диапазона дополнительно содержит на входе каждого канала направленный ответвитель мощности, а на выходе направленный ответвитель мощности, соединенный с системой контроля мощности, при этом выход каждого канала соединен с его входом через СВЧ выключатель, передающий канал содержит n-разрядный ступенчатый аттенюатор и дополнительный n-разрядный ступенчатый аттенюатор, имеющие одну схему управления, при этом вход n-разрядного ступенчатого аттенюатора подключен к выходу n-разрядного ступенчатого фазовращателя, а выход ко входу дополнительного n-разрядного ступенчатого аттенюатора, выход которого подключен ко входу согласующего усилителя, выход которого подключен ко входу предварительного усилителя.

Изобретение относится к антенной технике, в частности к фазированным антенным решеткам, имеющим модульную архитектуру для управления и мониторинга. Система фазированной антенной решетки может включать в себя множество подрешеток радиочастотных (РЧ) мозаичных элементов, расположенных в определенном порядке с образованием РЧ-апертуры.

Изобретение относится к радиотехнике, в частности к антенным решеткам. Полосковая линейная антенная решетка содержит коллинеарные щелевые излучатели, и делитель мощности на симметричной полосковой линии, выходные полосковые проводники которого замкнуты проводящими перемычками на один из экранов полосковой линии, и две проводящие стенки, замыкающие экраны полосковой линии между собой, образуя узкие стенки прямоугольного волновода, широкие стенки которого образованы экранами полосковой линии, отличающаяся тем, что щелевые излучатели прорезаны в первой проводящей стенке, расположенной вблизи прямолинейного края экранов полосковой линии, параллельного проводящим стенкам и осевой линии щелевых излучателей, а выходные полосковые проводники проходят через разрывы во второй проводящей стенке, содержат Т-образные полосковые разветвления в каждом излучателе и замыкаются на один из экранов полосковой линии внутри прямоугольного волновода вблизи краев щелевого излучателя.

Изобретение относится к радиолокации, в частности к устройству активной фазированной антенной решетки. АФАР содержит командно-вычислительный пункт (КВП), блок пространственно-временной обработки управления и контроля (БПВОУК), N модулей пространственной обработки управления и контроля (МПОУК) и М АППМ.
Наверх