Теплообменный элемент

Теплообменный элемент в виде трубы, полученный с использованием аддитивных технологий (3D печати), с изменяющейся вдоль оси формой поперечного сечения канала. Изменение формы поперечного сечения осуществляется путем растяжения, сжатия, поворота поперечного сечения канала и смещения центра масс поперечного сечения канала. При этом площадь поперечного сечения канала остается неизменной. Величины коэффициентов растяжения и сжатия поперечного сечения канала находятся в пределах от 1 до 15. Поперечное сечение канала теплообменного элемента в его начальной точке может иметь любую форму, например многоугольника, круга, овала, стадиона, звезды. 3 з.п. ф-лы, 4 ил.

 

Изобретение относится к области теплотехники и может быть использовано в рекуперативных теплообменных аппаратах различного назначения.

Известен теплообменный элемент в виде трубы с изменяющейся вдоль продольной оси трубы формой поперечного сечения канала, полученной благодаря деформированию трубы, причем форма поперечного сечения канала в каждой точке теплообменного элемента является результатом деформации (сжатия и поворота) овальной формы сечения канала теплообменного элемента в его начальной точке (авторское свидетельство СССР №1719873).

Недостатком этого элемента является то, что деформация поперечного сечения канала происходит только вдоль одной из его осей. В направлении другой оси форма и размер канала не меняются, поэтому в этих местах канала отсутствует отрыв пристенных слоев теплоносителя, что отрицательно сказывается на тепловой эффективности.

Кроме того, поскольку изменение формы поперечного сечения канала происходит путем деформации трубы, т.е. при сохранении периметра поперечного сечения канала, то происходит уменьшение площади поперечного сечения канала (например, при предельном сжатии трубы площадь поперечного сечения канала стремится к нулю), что ведет к увеличению средней скорости движения теплоносителя на участках с уменьшающейся площадью поперечного сечения, что в свою очередь приводит к увеличению гидравлического сопротивления.

Одновременно по мере возрастающего отклонения формы поперечного сечения канала от первоначальной формы уменьшается эквивалентный гидравлический диаметр, что также приводит к увеличению гидравлического сопротивления канала.

Известен теплообменный элемент в виде трубы с изменяющейся вдоль продольной оси трубы формой поперечного сечения канала, полученной благодаря деформированию цилиндрической трубы, причем форма поперечного сечения канала в каждой точке теплообменного элемента является результатом растяжения, сжатия и поворота круглой формы сечения канала теплообменного элемента в его начальной точке (патент GB №602398 А публикация 1948-05-26).

В данном элементе, благодаря комплексной деформации формы поперечного сечения канала (растяжение, сжатие и поворот), в поперечных сечениях отсутствуют зоны, остающиеся неизменными при деформации сечения канала элемента, поэтому происходит непрерывный отрыв пристенного слоя теплоносителя от стенок канала в любой точке теплообменного элемента, что улучшает тепловую эффективность.

Однако поскольку изменение формы поперечного сечения канала происходит путем деформации цилиндрической трубы, т.е. при сохранении периметра поперечного сечения канала, то происходит уменьшение площади поперечного сечения канала, что ведет к увеличению средней скорости движения теплоносителя на участках с уменьшающейся площадью, что в свою очередь приводит к увеличению гидравлического сопротивления.

Одновременно по мере отклонения формы поперечного сечения канала от круглой формы уменьшается эквивалентный гидравлический диаметр, что также приводит к увеличению гидравлического сопротивления канала.

Задачей предлагаемого технического решения является повышение тепловой эффективности и снижение гидравлического сопротивления теплообменного элемента.

Поставленная задача решается тем, что площадь поперечного сечения канала теплообменного элемента в любой его точке остается неизменной. Центр масс любого поперечного сечения канала может быть смещен относительно центра масс поперечного сечения канала в его начальной точке. Величины коэффициентов растяжения и сжатия поперечного сечения канала находятся в пределах от 1 до 15. Сечение канала теплообменного элемента в его начальной точке может иметь любую форму, например, многоугольника, круга, овала, стадиона, звезды.

Сохранение неизменной площади поперечного сечения канала в любой точке теплообменного элемента достигается за счет изменения периметра поперечного сечения. Это позволяет сохранить неизменной среднюю скорость теплоносителя в любом поперечном сечении теплообменного элемента, что исключает рост гидравлического сопротивления, обусловленный локальным повышением скорости.

Смещение центра масс любого поперечного сечения канала относительно центра масс поперечного сечения канала в его начальной точке ведет к появлению дополнительных усилий по отрыву пристенного слоя теплоносителя, что способствует росту тепловой эффективности.

Изменение формы канала обеспечивает турбулизацию потока за счет возникновения микровихревых структур в пристенной области, которые повышают тепловую эффективность. Однако одновременно, по мере отклонения формы поперечного сечения канала от круглой формы, уменьшается эквивалентный гидравлический диаметр, т.е. увеличивается гидравлическое сопротивление канала. Для обеспечения целесообразного соотношения повышения тепловой эффективности и роста гидравлического сопротивления величины коэффициентов растяжения и сжатия сечения канала находятся пределах от 1 до 15.

Поперечное сечение канала теплообменного элемента в его начальной точке может быть любой заданной формы, например, многоугольника, круга, овала, стадиона, звезды.

Заявляемое техническое решение может быть реализовано, например, с использованием аддитивных технологий (3D печати).

На рисунке 1 представлен заявляемый теплообменный элемент в виде трубы с изменяющейся вдоль продольной оси формой поперечного сечения канала, которая является результатом растяжения, сжатия, поворота и смещения круглой формы сечения канала теплообменного элемента в его начальной точке, а также представлены поперечные сечения этого элемента. При этом площадь поперечного сечения канала в любой точке теплообменного элемента остается неизменной благодаря изменению периметра поперечного сечения канала.

На рисунке 2 представлен заявляемый теплообменный элемент в виде трубы с изменяющейся вдоль продольной оси формой поперечного сечения канала, которая является результатом растяжения, сжатия, поворота и смещения шестигранной формы сечения канала теплообменного элемента в его начальной точке, а также представлены поперечные сечения этого элемента. При этом площадь поперечного сечения канала в любой точке теплообменного элемента остается неизменной благодаря изменению периметра поперечного сечения канала.

Заявляемый теплообменный элемент функционирует следующим образом. Теплоноситель, двигаясь внутри теплообменного элемента, поперечное сечение которого в его начальной точке может иметь любую форму (например, многоугольника, круга, овала, стадиона, звезды), испытывает, благодаря растяжению, сжатию, повороту и смещению центра масс поперечного сечения канала вдоль продольной оси, непрерывные усилия отрыва пристенных слоев от стенок канала, в результате чего возникают микровихревые структуры, турбулизирующие ламинарные пристенные слои теплоносителя, что обеспечивает повышение тепловой эффективности. Поскольку площадь поперечного сечения канала в любой точке теплообменного элемента остается неизменной, скорость теплоносителя вдоль канала остается постоянной, что исключает обусловленный локальным повышением скорости рост гидравлического сопротивления. Благодаря тому, что значения коэффициентов растяжения и сжатия поперечного сечения канала находятся в пределах от 1 до 15, обеспечивается целесообразное соотношение повышения тепловой эффективности и роста гидравлического сопротивления.

Использование предлагаемого технического решения позволяет повысить тепловую эффективность и снизить гидравлическое сопротивление теплообменного элемента.

1. Теплообменный элемент в виде трубы с изменяющейся вдоль продольной оси трубы формой поперечного сечения канала, которая является результатом растяжения, сжатия и поворота формы сечения канала теплообменного элемента в его начальной точке, отличающийся тем, что площадь поперечного сечения канала теплообменного элемента в любой его точке остается неизменной.

2. Теплообменный элемент по п. 1, отличающийся тем, что центр масс любого поперечного сечения канала может быть смещен относительно центра масс поперечного сечения канала в его начальной точке.

3. Теплообменный элемент по п. 1, отличающийся тем, что величины коэффициентов растяжения и сжатия поперечного сечения канала находятся в пределах от 1 до 15.

4. Теплообменный элемент по п. 1, отличающийся тем, что поперечное сечение канала теплообменного элемента в его начальной точке может иметь любую форму, например, многоугольника, круга, овала, стадиона, звезды.



 

Похожие патенты:

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменных аппаратов. Теплообменный аппарат, полученный с использованием аддитивных технологий (3D печати), содержащий патрубки подвода и отвода теплообменивающихся сред и теплопередающий блок, состоящий из основного участка, сформированного продольно ориентированными, расположенными в шахматном порядке для каждой из теплообменивающихся сред и имеющими общие стенки каналами, и двух концевых участков.

Изобретение относится к области теплоэнергетики и может быть использовано в теплообменных аппаратах. В трубном пучке конденсатора пара, содержащем теплообменные трубки, установленные в трубных досках цилиндрическими соосными рядами, теплообменные трубки, как минимум, каждого ряда выполнены с овальным или плоскоовальным поперечным сечением с переменным в радиальном направлении отношением большего наружного размера поперечного сечения теплообменных трубок к его меньшему наружному размеру, при этом продольная ось поперечного сечения теплообменных трубок рядов периферийной зоны направлена радиально, а продольная ось поперечного сечения теплообменных трубок рядов центральной зоны направлена перпендикулярно радиусу трубного пучка, при этом теплообменные трубки установлены винтообразно с переменным в радиальном направлении углом закрутки к образующей цилиндрической поверхности ряда с уменьшением угла закрутки от периферии трубного пучка к его центру.

Изобретение относится к области трубной техники и может быть использовано в различных теплогенерирующих и теплообменных установках, а также сетях снабжения или системах циркуляции теплоносителя в качестве устройства, регулирующего эксплуатационные параметры перемещаемой рабочей среды.

Изобретение относится к области теплотехники и может быть использовано в теплообменных аппаратах. В оребренной теплообменной трубе на каждом ребре прессованием или штамповкой выполнено множество стреловидных фигурных элементов, при этом стреловидный фигурный элемент образован двумя пересекающимися клиновидными секциями.

Предложены охладители с замкнутым контуром и испарительные конденсаторы хладагентов с трубами эллиптического сечения со спиральными ребрами, в которых поток воздуха, попадающий в блок, направляется через трубы в направлении, которое параллельно осям труб и в целом перпендикулярно ребрам, что дает совершенно неожиданный прирост производительности на 25% по сравнению со сравнимыми блоками, в которых поток воздуха направлен поперек осей труб или перпендикулярно им.

Изобретение относится к водонагревателям, а также к трубам выпуска газообразных продуктов сгорания водонагревателя и способам нагревания текучей среды. Содержит корпус, ограничивающий внутреннее пространство, источник нагревания, размещенный во внутреннем пространстве корпуса и содержащий по меньшей мере одну горелку, трубу выпуска газообразных продуктов сгорания, размещенную во внутреннем пространстве корпуса и выполненную с возможностью выпуска через нее газообразных продуктов сгорания от по меньшей мере одной горелки, и теплообменники.

Пластинчатый ребристый теплообменник содержит множество ребристых холодных рядов, выполненных с возможностью проводить первую текучую среду, и множество ребристых теплых рядов, выполненных с возможностью проводить вторую текучую среду.

Предлагается ребро (4, 4a, 4b, 4c, 4d) для трубной системы котла, содержащей несколько труб (34, 36, 38, 40) котла, проходящих вдоль друг друга, и узел (32), содержащий такую трубную систему котла и такое ребро.

Теплообменный аппарат, изготовленный с использованием аддитивных технологий (3D печати), содержит теплопередающий блок, состоящий из основного и двух концевых участков.

Изобретение относится к теплотехнике и может быть использовано при изготовлении элементов систем теплообмена. В заявляемом способе продольного оребрения рабочей поверхности теплообменника, конвективный модуль, состоящий из конвективных элементов, изготовленных из листового металла произвольной конфигурации, в том числе U-, V-, W-образного типа, каждый из которых имеет вершину, правое и левое ребро произвольной конфигурации и фальцевые кромки, выполненные таким образом, что при сопряжении конвективных элементов друг с другом разноименными ребрами с образованием фальцевого подвижного соединения, на рабочей поверхности теплообменника конвективные элементы зацепляют в натяг, используя их упругие свойства, при этом последний конвективный элемент замыкают с первым, образуя конвективный модуль.

Изобретение относится к области теплотехники и может быть использовано при изготовлении теплообменных аппаратов. Теплообменный аппарат, полученный с использованием аддитивных технологий (3D печати), содержащий патрубки подвода и отвода теплообменивающихся сред и теплопередающий блок, состоящий из основного участка, сформированного продольно ориентированными, расположенными в шахматном порядке для каждой из теплообменивающихся сред и имеющими общие стенки каналами, и двух концевых участков.
Наверх