Устройство для ввода и извлечения оборудования

Изобретение относится к химической и/или нефтегазодобывающей промышленности, а именно к устройствам для ввода и извлечения измерительного оборудования в емкости и трубопроводы, находящиеся под давлением и/или с высокой температурой. Устройство включает в себя патрубок с проходным каналом, соединенный с емкостью или трубопроводом, шлюзовую камеру, оснащенную радиальным уплотнением, и наружный фланец, обеспечивающий возможность наружного крепления оборудования. Обходной канал патрубка выполнен переменного диаметра с конусообразным переходом. Часть проходного канала с большим диаметром, являющаяся шлюзовой камерой, расположена со стороны наружного фланца. Патрубок соединен с емкостью или трубопроводом внутренним фланцем меньшего диаметра, чем диаметр наружного фланца. Радиальное уплотнение выпилено в виде как минимум одной самоуплотняющейся манжеты, герметизирующей со стороны емкости или трубопровода и установленной в шлюзовой камере для увеличения ее проходного диаметра. Количество последовательно установленных самоуплотняющихся манжет и осевая длина герметизирующего участка каждой самоуплотняющейся манжеты выполнены достаточными для обеспечения герметизации всех элементов оборудования, проходящих через нее. Предлагаемое устройство для ввода и извлечения оборудования просто и надежно в изготовлении, обслуживании и ремонте, при этом позволяет работать и в агрессивных средах. 3 з.п. ф-лы, 3 ил.

 

Предложение относится к химической и/или нефтегазодобывающей промышленности, а именно к устройствам для ввода и извлечения измерительного оборудования в емкости и трубопроводы, находящиеся под давлением и/или с высокой температурой.

Известен переходник (патент на ПМ RU № 129182, МПК F16K 3/08, F16L 23/02, опубл. 20.06.2013 в Бюл. № 17), содержащий проходной канал, большой фланец с отверстиями для соединительных элементов и малый фланец с глухими отверстиями для соединительных элементов, причём проходной канал имеет переменный диаметр, часть проходного канала выполнена конусообразной, при этом он может быть оснащен задвижкой, выполненной в виде обратного клапана или штуцера.

Недостатками данного устройства являются при отсутствии задвижки переходник не может обеспечить ввод и извлечение оборудование под давлением и/или с высокой температурой, а при наличии задвижки – ввод оборудования без извлечения клапана или шибера, что также исключает возможность работы под давлением и/или с высокой температурой.

Наиболее близким является устройство для ввода и извлечения оборудования под давлением (патент на ПМ RU № 173138, МПК G01F 15/14, опубл. 14.08.2017 в Бюл. № 23), содержащее смонтированный на трубопроводе патрубок, запорную арматуру, шлюзовую камеру с вентилем сброса давления и загрузочным отверстием, выполненным с радиальным уплотнением, приспособлением для осевого перемещения оборудования, причем в загрузочное отверстие шлюзовой камеры установлен с возможностью осевого перемещения трубчатый зонд с фланцем, обеспечивающим возможность наружного крепления оборудования, а приспособление для осевого перемещения оборудования выполнено с возможностью воздействия на фланец трубчатого зонда.

Недостатками данного устройства являются сложность изготовления, обслуживания и ремонта за счет большого количества сложных точно сопрягаемых деталей, при этом при работе с агрессивными средами тонкостенный трубчатый зонд может быстро выйти их строя из-за коррозии или механического воздействия абразивными частицами, находящимися в емкости или трубопроводе.

Технической задачей предлагаемого изобретения является создание простой и надежной в изготовлении, обслуживании и ремонте конструкции устройства для ввода и извлечения оборудования, позволяющей работать и в агрессивных средах.

Техническая задача решается устройством для ввода и извлечения оборудования, включающим патрубок с проходным каналом, соединенный с емкостью или трубопроводом, шлюзовую камеру, оснащенную радиальным уплотнением, и наружный фланец, обеспечивающим возможность наружного крепления оборудования.

Новым является то, что проходной канал патрубка выполнен переменного диаметра с конусообразным переходом, причем часть проходного канала с большим диаметром, являющаяся шлюзовой камерой, расположена со стороны наружного фланца, а патрубок соединен с емкостью или трубопроводом внутренним фланцем меньшего диаметра, чем диаметр наружного фланца, при этом радиальное уплотнение выпилено в виде как минимум одной самоуплотняющейся манжеты, герметизирующей со стороны емкости или трубопровода и установленной в шлюзовой камере для увеличения ее проходного диаметра, причем количество последовательно установленных самоуплотняющихся манжет и осевая длина герметизирующего участка каждой самоуплотняющейся манжеты выполнены достаточными для обеспечения герметизации всех элементов оборудования, проходящих через нее.

Новым является также то, что самоуплотняющаяся манжета в сужающейся части армирована пружинным кольцом.

Новым является также то, что патрубок выполнен сборным с возможностью отсоединения шлюзовой камеры, оснащённой радиальным уплотнением, при этом шлюзовая камера может быть изготовлена сборной, состоящей из одинаковых элементов с одной соответствующей самоуплотняющейся манжетой.

На фиг. 1 изображена схема устройства с частичным продольным разрезом при отсутствии оборудования.

На фиг. 2 изображена схема устройства с частичным продольным разрезом при прохождении оборудования (уровнемера, датчика давления, датчика температуры или т.п.).

На фиг. 3 изображена схема устройства с частичным продольным разрезом при прохождении тягового элемента (штанги, трубки, кабеля или т.п.) оборудования.

Устройство для ввода и извлечения оборудования 1 (фиг. 2 и 3) включает патрубок 2 (фиг. 1) с проходным каналом 3, соединенный с емкостью или трубопроводом (не показаны), шлюзовую камеру 4, оснащенную радиальным уплотнением 5, и наружный фланец 6, обеспечивающим возможность наружного крепления (не показано) оборудования 1. Проходной канал патрубка выполнен переменного диаметра d1 и d2 с конусообразным переходом 7, причем часть проходного канала с большим диаметром d2, играющая роль шлюзовой камеры 4, расположена со стороны наружного фланца 6, а патрубок соединен с емкостью или трубопроводом внутренним фланцем 8 (фиг. 2) меньшего диаметра D1, чем диаметр D2 наружного фланца 6. Радиальное уплотнение 5 (фиг. 1) выпилено в виде как минимум одной самоуплотняющейся манжеты 9, герметизирующей со стороны емкости или трубопровода и установленной в шлюзовой камере 4 для увеличения ее проходного диаметра. Определяют эмпирическим путем количество последовательно установленных самоуплотняющихся манжет 9 и осевую длину Н1 (фиг. 1) герметизирующего участка каждой самоуплотняющейся манжеты 9, которые выполнены достаточными для обеспечения герметизации всех элементов оборудования 1 (фиг. 2) (расстояние Н2 для самого оборудования 1 – фиг. 2, расстояние Н3 для тягового элемента 10 – фиг. 3), проходящих через манжеты 9 (фиг. 1). При диаметрах оборудования более 25 мм каждая самоуплотняющаяся манжета 9 (фиг. 3) в сужающейся части может быть армирована пружинным кольцом 11.

Для удобства обслуживания патрубок 2 (фиг. 1) выполнен сборным с возможностью отсоединения (по резьбе, при помощи фланцев, прессовой посадкой или т.п. – не показано) шлюзовой камеры 4, оснащенного радиальным уплотнением 5. Шлюзовая камера 4 может быть изготовлена сборной (при помощи резьбы, фланцев, прессовой посадки или т.п. – не показано), состоящих из одинаковых элементов с одной соответствующей самоуплотняющейся манжетой 9 для удобства замены вышедшей из строя соответствующей манжеты 9.

Конструктивные элементы и технологические соединения, не влияющие на работоспособность устройства, на фиг. 1, 2 и 3 не показаны. Все применяемые соединения и фланцы (в том числе и фланцы 6 и 8) изготавливается и подбирается под существующие фланцы емкости или трубопровода и оборудования 1.

Устройство работает следующим образом.

Патрубок 2 внутренним фланцем 8 (фиг. 3) при помощи отверстий 12 присоединяется к фланцу (не показан) емкости или трубопровода (при помощи болтов, шпилек, гаек или т.п. – не показаны) которые в ходе работы подвержены изнутри высокому давления (более 0,1 МПа) и/или температуре (выше 45°С). В проходной канал 3 (фиг. 1) снаружи-внутрь вставляют необходимое оборудование 1 (фиг. 2), которое разжимает от центра самоуплотняющиеся манжеты 9 радиального уплотнения 5, которые за счет давления в емкости или трубопроводе и/или упругости самих манжет 9 (при наличии и при помощи пружинного кольца 11 – фиг. 3) герметично прижимаются к наружной поверхности оборудования 1 (фиг. 2).

Далее оборудование 1 спускают на тяговом элементе 10 (фиг. 3) в требуемый интервал установки в емкости или трубопроводе. При этом самоуплотняющиеся манжеты 9 за счет давления в емкости или трубопроводе и/или упругости самих манжет 9 (при наличии и при помощи пружинного кольца 11) герметично прижимаются к наружной поверхности тяговый элемент 10 (фиг. 2). После чего фланец (не показан) тягового элемента 10 фиксируют на наружном фланце 6 при помощи отверстий 13 (болтами, шпильками, гайками или т.п. – не показаны).

При извлечении оборудования 1 (фиг. 2) для ремонта, замены или исследования проход через самоуплотняющиеся манжеты 9 тягового элемента 10 (фиг. 3) и оборудования 1 (фиг. 2) происходит в обратном порядке. До полного извлечения см. фиг. 1. При этом самоуплотняющиеся манжеты 9 постоянно герметизируют внутренне пространство шлюзовой камеры 4, не позволяя давлению и/или температуре вырваться наружу емкости или трубопровода. Если не предполагается дальнейший спуск оборудования 1 (фиг. 2) наружный фланец 6 (фиг. 1) снабжают заглушкой или запорным элементом (не показаны) для снижения нагрузки на радиальное уплотнение 5. Так как все конструктивные элементы просты в изготовлении и имеют достаточные габаритные размеры, то данное устройство хорошо себя зарекомендовало при работе с высоким давлением (более 15 МПа), температурой (более 120 °С) и с агрессивной средой (кислота, сернистая нефть и т.п.).

Предлагаемое устройство для ввода и извлечения оборудования просто и надежно в изготовлении, обслуживании и ремонте, при этом позволяет работать и в агрессивных средах.

1. Устройство для ввода и извлечения оборудования, включающее патрубок с проходным каналом, соединенный с емкостью или трубопроводом, шлюзовую камеру, оснащенную радиальным уплотнением, и наружный фланец, обеспечивающим возможность наружного крепления оборудования, отличающееся тем, что проходной канал патрубка выполнен переменного диаметра с конусообразным переходом, причем часть проходного канала с большим диаметром, являющаяся шлюзовой камерой, расположена со стороны наружного фланца, а патрубок соединен с емкостью или трубопроводом внутренним фланцем меньшего диаметра, чем диаметр наружного фланца, при этом радиальное уплотнение выпилено в виде как минимум одной самоуплотняющейся манжеты, герметизирующей со стороны емкости или трубопровода и установленной в шлюзовой камере для увеличения ее проходного диаметра, причем количество последовательно установленных самоуплотняющихся манжет и осевая длина герметизирующего участка каждой самоуплотняющейся манжеты выполнены достаточными для обеспечения герметизации всех элементов оборудования, проходящих через нее.

2. Устройство для ввода и извлечения оборудования по п. 1, отличающееся тем, что самоуплотняющаяся манжета в сужающейся части армирована пружинным кольцом.

3. Устройство для ввода и извлечения оборудования по п. 1 или 2, отличающееся тем, что патрубок выполнен сборным с возможностью отсоединения шлюзовой камеры, оснащенной радиальным уплотнением.

4. Устройство для ввода и извлечения оборудования по п. 3, отличающееся тем, что шлюзовая камера изготовлена сборной, состоящей из одинаковых элементов с одной соответствующей самоуплотняющейся манжетой.



 

Похожие патенты:

Настоящее изобретение касается способа и устройства коррекции импульсности выходного сигнала датчика массового расхода воздуха, предназначенного для определения массы воздуха для сгорания в двигателе внутреннего сгорания с наддувом.

Настоящее изобретение относится к расходомерам и, в частности, к способам измерения на основе эффекта Кориолиса, которые обеспечивают непрерывный контроль и большую точность в количественных и качественных измерениях потока многофазного флюида.

Настоящее изобретение относится к расходомерам и, в частности, к способам измерения на основе эффекта Кориолиса, которые обеспечивают непрерывный контроль и большую точность в количественных и качественных измерениях потока многофазного флюида.

Изобретение относится к способу определения достоверности измерения вибрационного расходомера и электронному измерителю для расходомера. Способ содержит следующие этапы, на которых: помещают технологический флюид в вибрационный измеритель; измеряют количество вовлеченного газа в технологическом флюиде, причем количество вовлеченного газа определяется объемом газа; и определяют уровень достоверности измерения по меньшей мере одного рабочего параметра потока на основании количества вовлеченного газа в технологическом флюиде и интервала времени между регистрациями состояний флюида.

Предоставляется способ обнаружения неточного измерения расхода вибрационным измерителем. Способ включает в себя текущий через вибрационный измеритель флюид и измерение расхода и плотности флюида вибрационным измерителем, и вычисление скорости изменения плотности флюида.

Изобретение относится к расходомерам, а более конкретно к способу и устройству для определения и применения переменных алгоритмов обнуления к вибрационному расходомеру в переменных условиях эксплуатации.

Изобретение относится к расходомерам, а более конкретно к способу и устройству для определения и применения переменных алгоритмов обнуления к вибрационному расходомеру в переменных условиях эксплуатации.

Изобретение относится к расходомерам и, в частности, к инструменту для определения оптимальных рабочих параметров для системы дифференциального расходомера. Способ включает в себя этапы, на которых осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру подачи, в вычислительное устройство и осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру возврата, в вычислительное устройство.

Изобретение относится к расходомерам и, в частности, к инструменту для определения оптимальных рабочих параметров для системы дифференциального расходомера. Способ включает в себя этапы, на которых осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру подачи, в вычислительное устройство и осуществляют ввод спецификаций аппаратного обеспечения, относящихся к расходомеру возврата, в вычислительное устройство.

Предложен способ определения качества топлива, используя двигательную систему 200, содержащую двигатель 208, сконфигурированный для потребления топлива, имеющий по меньшей мере два расходомера 214, 216.

Изобретение относится к железнодорожному машиностроению, в частности к буксовому подшипниковому узлу. Буксовый подшипниковый узел содержит сдвоенный цилиндрический роликовый подшипник, состоящий из двух неподвижных двубортных наружных и двух вращающихся наружных колец, на внутренней поверхности каждого из которых имеются дорожки качения и осевые направляющие борта, на которые опираются цилиндрические ролики.
Наверх