Способ цифровой фильтрации шумовой составляющей в инерциальных датчиках

Изобретение относится к области приборостроения и может быть использовано при построении одноосных и трехосных измерителей угловых скоростей и линейных ускорений с цифровым выходом информации. Сущность заявленного решения заключается в том, что способом цифровой фильтрации шумовой составляющей в инерциальных датчиках путем выделения из выходного сигнала датчика на заданном интервале времени его среднего значения, определения на последующем участке времени знака шумовой составляющей относительно среднего значения выходного сигнала, определенного на предыдущем интервале времени, и вычитания из выходного сигнала датчика шумовой составляющей заданной величины с учетом ее знака, при этом дополнительно осуществляется предварительное осреднение выходного сигнала датчика, полученный результат вычитается из среднего значения выходного сигнала, определенного на рабочем интервале фильтрации, и сравнивается с допустимой для дальнейшей фильтрации их разностью по модулю, при превышении этой величины дальнейшая фильтрация не производится, при соблюдении заданного ограничения фильтрация выходного сигнала датчика осуществляется путем вычитания из выходного сигнала разности между мгновенным и средним значениями выходного сигнала, при этом вводится задержка включения фильтра на заданное время. Технический результат при реализации заявленного решения заключается в повышении качества цифровой фильтрации шумовой составляющей выходного сигнала инерциальных датчиков. 2 ил.

 

Изобретение относится к области приборостроения и может быть использовано при построении одноосных и трехосных измерителей угловых скоростей и линейных ускорений с цифровым выходом информации [1-3].

Одним из основных требований, предъявляемым к гироскопическим датчикам - гироскопам и акселерометрам, при их использовании в пилотажных системах управления летательными аппаратами, является обеспечение минимального уровня шумовой составляющей в их выходных сигналах.

Известными и широко распространенными способами подавления шумовой составляющей в выходных сигналах гироскопических датчиков с цифровым выходом информации является использование разнообразных цифровых фильтров [4, 5, 6, 7].

Основным недостатком таких фильтров является возникновение большого фазового запаздывания выходного сигнала датчика, вызванное временной задержкой, что делает в ряде случаев невозможным использование датчиков в системах управления летательными аппаратами.

Прототипом предлагаемого изобретения является цифровой фильтр [8], в котором задача обеспечения заданного уровня цифровой фильтрации шумовой составляющей в выходном сигнале датчика при минимальном фазовом запаздывании, решается путем выделения из выходного сигнала датчика на заданном интервале времени его среднего значения, определения на последующем участке времени знака шумовой составляющей относительно среднего значения выходного сигнала, определенного на предыдущем интервале времени, и вычитания из выходного сигнала шумовой составляющей заданной величины с учетом ее знака. При использовании такого фильтра фазовое запаздывание практически не имеет места. Это его основное преимущество.

Основными недостатками прототипа являются: ограниченная величина компенсации шумовой составляющей в выходном сигнале инерциального датчика, возможность изменения среднего значения выходного сигнала при быстрых изменениях измеряемой величины сигнала.

Заявленное изобретение решает задачу обеспечения максимального уровня цифровой фильтрации шумовой составляющей в выходном сигнале датчика без искажений его среднего значения.

Техническим результатом заявленного изобретения является повышение качества цифровой фильтрации шумовой составляющей выходного сигнала инерциальных датчиков.

Заявленный технический результат достигается способом цифровой фильтрации шумовой составляющей в инерциальных датчиках путем выделения из выходного сигнала датчика на заданном интервале времени его среднего значения, определения на последующем участке времени знака шумовой составляющей относительно среднего значения выходного сигнала, определенного на предыдущем интервале времени, и вычитания из выходного сигнала датчика шумовой составляющей заданной величины с учетом ее знака, при этом согласно изобретению дополнительно осуществляется предварительное осреднение выходного сигнала датчика, полученный результат вычитается из среднего значения выходного сигнала, определенного на рабочем интервале фильтрации, и сравнивается с допустимой для дальнейшей фильтрации их разностью по модулю, при превышении этой величины дальнейшая фильтрация не производится, при соблюдении заданного ограничения фильтрация выходного сигнала датчика осуществляется путем вычитания из выходного сигнала разности между мгновенным и средним значениями выходного сигнала, при этом вводится задержка включения фильтра на заданное время.

Сущность изобретения поясняется Фиг. 1, 2.

На Фиг. 1 приведена структурно-функциональная схема системы, реализующей предложенный способ цифровой фильтрации.

На Фиг. 2 приведен график с полученными результатами фильтрации выходного сигнала микромеханического гироскопа ADXRS 646 американской фирмы Analog Devices, где: а - исходный массив выходного сигнала гироскопа ADXRS 646; b - выходной сигнал, отфильтрованный по алгоритму прототипа; с - выходной сигнал, отфильтрованный предложенным способом фильтрации; d - выброс шумовой составляющей исходного массива; е - выброс шумовой составляющей при фильтрации по прототипу; f - компенсация выброса после введения предварительного осреднения по предложенному способу; Δωср - смещение среднего значения выходного сигнала при фильтрации по прототипу; Тз - время задержки включения фильтра.

Изобретение реализуется следующим образом. В блоке 1 (Фиг. 1) осуществляется прием измеряемого сигнала, в блоке 2 предварительное осреднение выходного сигнала на коротком интервале времени ΔТк<<ΔТр, необходимое для компенсации выбросов шумовой составляющей (Фиг. 2, позиции а, b, с). В блоке 3 производится расчет скользящего среднего значения выходного сигнала ωср(n) на рабочем интервале фильтрации ΔТр. В блоке 4 находится разность по модулю между средним значением выходного сигнала на рабочем интервале фильтрации и средним значением предварительного осреднения выходного сигнала . Полученная величина сравнивается с допустимой Δσ из условия обеспечения фильтрации без искажения выходного сигнала. Она должна быть меньше допустимой Δωк<Δσ. При выполнении этого условия в блоке 5 производится расчет компенсирующей величины шумовой составляющей в виде разности между мгновенным значением выходного сигнала ω(n) и его средним значением ωср(n), определенном на рабочем интервале фильтрации Δω(n)=ω(n)-ωср(n), и определяется знак полученной разности: если Δω(n)>ωср(n), то знак при Δω(n) принимается положительным, а если Δω(n)<ωср(n), то знак при Δω(n) принимается отрицательным. Кроме того, в этом же блоке контролируется условие задержки включения фильтра в виде с≥Тз, где Тз - время задержки, соблюдение которой необходимо для устранения смещения среднего значения Δωср выходного сигнала при его переходе от быстро изменяющейся величины к постоянной - фиг. 2. В блоке 6 производится вычитание рассчитанного уровня помехи из выходного сигнала с учетом знака. Полученный результат идет на выход алгоритма.

При невыполнении условия Δωк<Δσ фильтрация не производится. Далее на последующих тактах измерений процедура, изложенная выше, повторяется.

Как видно из приведенных графиков (фиг. 2), использование предложенного метода цифровой фильтрации позволяет максимально скомпенсировать шумовую составляющую - до уровня среднего значения выходного сигнала, компенсировать отдельные выбросы и не искажать выходной сигнал в переходных режимах, что чрезвычайно важно для повышения качества регулирования при использовании инерциальных датчиков первичной информации в комплексных системах управления летательных аппаратов.

ИСТОЧНИКИ ИНФОРМАЦИИ

1. Кузнецов А.Г., Абутидзе З.С., Портнов Б.И., Галкин В.И., Калик А.А. Микромеханические датчики для пилотажных систем управления // Гироскопия и навигация. 2010, №2(69). С. 50-56.

2. ST Microelectronics (США), каталог микромеханических приборов, www.st.com.

3. Sensonor A.S. (Норвегия), гироскоп STIM-210, www.sensor.com.

4. МТ Microsestems (Китай), каталог микромеханических приборов, www.cetcmems.com.

5. Г. Лэм Аналоговые и цифровые фильтры. Перевод с английского, М., «Мир», 1982, 592 с.

6. Введение в цифровую фильтрацию. Под редакцией Р. Богнера и А. Константинидиса. Перевод с английского, М., «Мир», 1975, 216 с.

7. И.А. Мизин, А.А. Матвеев Цифровые фильтры (анализ, синтез, реализация с использованием ЭВМ). - М.: Связь, 1979. - 240 с., ил.

8. Патент РФ №2654941. Способ цифровой фильтрации шумовой составляющей в инерциальных датчиках / Галкин В.И., Воробьев Д.Н. / Бюллетень изобретений. - 2018 - №15.

Способ цифровой фильтрации шумовой составляющей в инерциальных датчиках путем выделения из выходного сигнала датчика на заданном интервале времени его среднего значения, определения на последующем участке времени знака шумовой составляющей относительно среднего значения выходного сигнала, определенного на предыдущем интервале времени, и вычитания из выходного сигнала датчика шумовой составляющей заданной величины с учетом ее знака, отличающийся тем, что дополнительно осуществляется предварительное осреднение выходного сигнала датчика, полученный результат вычитается из среднего значения выходного сигнала, определенного на рабочем интервале фильтрации, и сравнивается с допустимой для дальнейшей фильтрации их разностью по модулю, при превышении этой величины дальнейшая фильтрация не производится, при соблюдении заданного ограничения фильтрация выходного сигнала датчика осуществляется путем вычитания из выходного сигнала разности между мгновенным и средним значениями выходного сигнала, при этом вводится задержка включения фильтра на заданное время.



 

Похожие патенты:

Изобретение относится к области испытания и технического диагностирования машин, в частности к встроенным контрольно-измерительным приборам машин, оснащенных двигателями внутреннего сгорания.

Изобретение относится к области приборостроения, а именно к устройствам для измерения угловой скорости. Микрооптоэлектромеханический датчик угловой скорости выполнен на основе волнового твердотельного гироскопа и оптического туннельного эффекта, содержит чувствительный элемент, выполненный в виде кольцевого резонатора, четыре канала приемопередачи оптического излучения, блок управления, блок обработки информации, при этом в блок электроники введен блок коррекции, содержащий два усиливающих и одно умножающее устройство, блок обработки, состоящий из суммирующе-вычитающего устройства и усилителя, дополнительно вычисляет значение линейных ускорений по двум осям, при этом четыре входа суммирующе-вычитающего устройства связаны с выходами каналов приемопередачи оптического излучения, три сигнала, вырабатываемые суммирующе-вычитающим устройством, подаются на входы трех усилителей, выходы которых связаны с входами умножающего устройства.

Группа изобретений относится к испытательной технике, а именно к внешнетраекторной регистрации параметров пролета метаемого тела (МТ) на участках промежуточной и внешней баллистики, при осколочных и пулеосколочных испытаниях.

Изобретение относится к устройству определения длины и скорости кабеля при проведении спускоподъемных операций на скважине. Техническим результатом изобретения является создание устройства для одновременного определения длины и скорости кабеля при спуске в скважину и его подъёме с возможностью его использования для кабеля любого типоразмера и в комплекте с установкой для намотки и размотки кабеля любой конструкции.

Изобретение относится к области волоконной оптики и может быть использовано при конструировании гироскопических измерителей вектора угловой скорости (ГИВУС) на основе волоконно-оптических гироскопов (ВОГ).

Изобретение относится к горному делу и строительству, используется для дистанционной регистрации и измерения параметров исполнительных органов горных и строительных машин с ударным принципом погружения в процессе их воздействия на разрабатываемую геосреду, применяется в лабораторных и натурных исследованиях.

Изобретение относится к измерительной технике и может быть использовано в системах измерения расходов газообразных сред. Измеритель воздушной скорости содержит проточный корпус с расположенной, перпендикулярно потоку, внутри пластиной, на которой размещены по ее разные стороны в потоке струйные элементы, на одной стороне - два, на другой - один, соединенные каналами управления в последовательную цепь, замкнутую с выхода последнего элемента на вход первого элемента, и подключенные соплами питания к потоку, выход последнего струйного элемента подключен каналами к пневмоэлектропреобразователю, и далее к индикатору скорости потока, атмосферные каналы элементов соединены в общую полость, связанную с набегающим потоком через прорези в корпусе.

Изобретение относится к области полигонных испытаний, в частности для определений баллистических характеристик снарядов. Способ определения зависимости баллистических характеристик снарядов от режимов стрельбы, заключающийся в формировании в пространстве вдоль предполагаемой траектории движения снарядов n неконтактных измерительных полей в виде двухмерных сеток на основе выполнения конструкции неконтактных датчиков в виде двух линеек излучателей и фотоприемников, размещенных в вертикальной и горизонтальной плоскостях, определении скорости и координат пролета снарядов относительно n измерительных полей на основе фиксации моментов и сработавших комбинаций элементов матриц фотоприемников, определении углов нутации на основе измерения основных элементов движения снаряда относительно центра массы, при этом для определения углов нутации предварительно определяют характерные размеры пробоин на каждой мишени при каждом угловом положении снарядов, определяют угол нутации в соответствии с видом пробоины на основе сравнении комбинации сработавших элементов фотоприемников с заданными значениями, определяют нулевое значение угла нутации, в случае если пробоина имеет форму окружности, данный вид пробоины образуется в случае совпадении оси снаряда с вектором скорости центра массы, определении значения углов нутации при увеличении размера пробоины в направлении отклонения оси снаряда от касательной к траектории, определяют динамику нутационного движения на основе измерения величины большой оси пробоины вдоль траектории движения снарядов, при выполнении стрельбы определяют режим стрельбы (номер и длительность очереди), определяют зависимость углов нутации от режимов стрельбы, учитывают время стрельбы, количество выстрелов и режимы стрельбы авиационного артиллерийского оружия в процессе эксплуатации.

Изобретение относится к области полигонных испытаний, в частности для определений баллистических характеристик снарядов. Способ определения зависимости баллистических характеристик снарядов от условий стрельбы, заключающийся в формировании в пространстве вдоль предполагаемой траектории движения снарядов n-измерительных полей в виде двухмерных сеток на основе выполнения конструкции неконтактных датчиков в виде двух линеек излучателей и фотоприемников, размещенных в вертикальной и горизонтальной плоскостях, определении скорости и координат пролета снарядов относительно измерительных полей на основе фиксации моментов и сработавших комбинаций элементов матриц фотоприемников, определении углов нутации на основе измерения основных элементов движения снаряда относительно центра массы, при этом предварительно определяют характерные размеры пробоин на каждой мишени при каждом угловом положении снарядов, определяют угол нутации в соответствии с видом пробоины на основе сравнения комбинации сработавших элементов фотоприемников с заданными значениями, определяют нулевое значение угла нутации, в случае если пробоина имеет форму окружности, при этом данный вид пробоины образуется в случае совпадения оси снаряда с вектором скорости центра массы, определении значения углов нутации при увеличении размера пробоины в направлении отклонения оси снаряда от касательной к траектории, определении динамики нутационного движения на основе измерения величины большой оси пробоины вдоль траектории движения снарядов, дополнительно определяют условия стрельбы, при этом определяют режимы стрельбы как «одиночная стрельба» или «стрельба очередью», интервалы стрельбы между очередями, длительность очереди, осуществляют запись данных о параметрах полета снарядов и режимах стрельбы в блок памяти, определяют зависимость баллистических характеристик снарядов от условий стрельбы.

Изобретение относится к области исследований быстропротекающих процессов с применением эффекта Доплера с помощью лазерной гетеродинной диагностики и может быть использовано для непрерывной регистрации скорости движущегося объекта/объектов.

Изобретение относится к групповым средствам разведки, управления и связи и предназначено для управления стрельбой из стрелкового оружия и других огневых средств военнослужащими общевойсковых и аналогичных подразделений на поле боя.

Изобретение относится к устройствам отображения информации, а именно к командно-пилотажным индикаторам (КПИ). Технической задачей заявляемого изобретения является повышение безопасности и упрощение контроля выполнения программных режимов полета; упрощение пилотирования вертолетом при полете в сложных метеоусловиях в точку; а также исключение аварийных случаев при посадке вертолета в сложных метеоусловиях на качающуюся взлетно-посадочную полосу корабля за счет повышения информационной наглядности представления на экране КПИ прогнозируемых параметров динамики движения вертолета.

Изобретение относится к области навигационного приборостроения и может найти применение в навигационных системах морских, воздушных и наземных объектов. Технический результат - повышение точности бесплатформенной инерциальной навигационной системы (БИНС) на основе непрерывной коррекции курсовертикали, в том числе и в условиях маневра.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов ЛА. Предложенный способ формирования воздушно-скоростных параметров маневренного объекта заключается в совместной обработке информации, включающей измеряемые системой воздушных сигналов и датчиком углов атаки и скольжения текущие значения модуля воздушной скорости и углов атаки и скольжения, ориентации объекта относительно связанной с ним системы координат, текущее расчетное значение модуля скорости ветра, а также неизвестные, подлежащие оцениванию, функциональные параметры, формируемые по результатам инерциально-доплеровской коррекции углов истинного курса, крена и тангажа объекта и модуля путевой скорости объекта с определяющими его текущую пространственную ориентацию относительно собственной системы координат.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов ЛА. Предлагаемый защищенный способ привязки к подвижной наземной цели основан на комбинации кинематического метода определения наклонной дальности (КМОД) и модифицированного угломестного способа определения текущей дальности до подвижной наземной цели (МУСОД) и предполагает реализацию оптимальной процедуры инерциально-доплеровского оценивания и коррекции, а также синтез бароинерциального канала формирования абсолютной высоты и вертикальной скорости.

Изобретение относится к области измерительных информационных систем и комплексов боевых летательных аппаратов (ЛА). Предложенный способ формирования бароинерциальной высоты и вертикальной скорости заключается в том, что используют сигнал вертикального канала инерциальной навигационной системы, реализуемой в соответствии с дискретной процедурой фильтрации и идентификации Калмана, осуществляют параллельное интегрирование сигнала, измеряемого вертикальным акселерометром, и сравнение результатов интегрирования с обеспечением грубого формирования вертикальной скорости, и обеспечивают расчет в режиме инерциально-доплеровской коррекции.

Изобретение относится к области измерительных информационных систем и комплексов боевых самолетов и вертолетов, в котором проводится разработка способа оптимального оценивания полного перечня параметров состояния инерциальной навигационной системы (ИНС) и эффективной коррекции измеряемой ей навигационной и пилотажной информации.

Изобретение относится к области навигационного приборостроения и может найти применение в системах контроля и управления летательными аппаратами (ЛА). Технический результат - расширение функциональных возможностей и повышение точности определения навигационных параметров.

Командно-пилотажный индикатор вертолета содержит экран, выполненный с возможностью индикации индекса «Самолет» в виде прямой, символизирующей крылья летательного аппарата (ЛА), а также подвижного индекса «Лидер», имеющего дополнительно вертикальную прямую, символизирующую киль ЛА, а также с возможностью индикации определенных параметров полета, полученные из соответствующих блоков их измерения и вычисления, средства управления индексом «Лидер».

Изобретение относится к навигационной технике и представляет собой аппаратуру наземной навигации движущегося наземного транспортного средства (ТС). Аппаратура наземной навигации включает в свой состав путевую систему, курсовую систему, навигационный вычислитель и навигационную аппаратуру потребителя спутниковой навигационной системы, при этом выход путевой системы соединен со вторым входом навигационного вычислителя, первый вход которого соединен с выходом навигационной аппаратурой потребителя спутниковой навигационной системы.

Изобретение относится к области приборостроения и может применяться при создании резонаторов твердотельных волновых гироскопов и датчиков угловой скорости. В способе изготовления сферического резонатора формируют глухие отверстия в кремниевой пластине с планарной стороны, размещают на ней стеклянную пластину.
Наверх