Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция


C01P2004/03 - Неорганическая химия (обработка порошков неорганических соединений для производства керамики C04B 35/00; бродильные или ферментативные способы синтеза элементов или неорганических соединений, кроме диоксида углерода, C12P 3/00; получение соединений металлов из смесей, например из руд, в качестве промежуточных соединений в металлургическом процессе при получении свободных металлов C21B,C22B; производство неметаллических элементов или неорганических соединений электролитическими способами или электрофорезом C25B)

Владельцы патента RU 2705084:

Федеральное государственное бюджетное учреждение науки Институт металлургии и материаловедения им. А.А. Байкова Российской академии наук (ИМЕТ РАН) (RU)

Изобретение может быть использовано в реконструктивно-пластической хирургии для пластической реконструкции поврежденных костных тканей. Для получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, для заполнения костных дефектов проводят синтез in situ фосфатов кальция в 2% водном растворе поливинилпирролидона при температуре реакционной смеси от 37 до 90°С. После завершения синтеза фосфатов кальция в реакционную смесь добавляют 2% водный раствор альгината натрия, перемешивают в течение 30 мин. Реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора. Вспененную массу обрабатывают 5% водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10 до -18°С и высушивают в лиофильной сушилке. Изобретение позволяет получить высокопористый биосовместимый материал, включающий равномерно распределенные наноразмерные частицы фосфатов кальция, приближенный по структуре к естественной костной ткани человека и не содержащий ксеногенные компоненты. 1 ил., 3 пр.

 

Область техники, к которой относится изобретение

Изобретение относится к медицине, а именно к реконструктивно-пластической хирургии для пластической реконструкции поврежденных костно-хрящевых тканей. Уровень техники.

Известно, что в результате введения клеточного материала в организм без матрикса-носителя, почти все клетки гибнут из-за отсутствия условий для их пролиферации. По этой причине проблема создания имплантатов на основе матриксов-носителей является одной из ключевых в реализации технологий клеточной трансплантации. Главными требованиями к матриксам-носителям должны быть их высокая биосовместимость и способность стимулировать собственные регенерационные процессы поврежденного органа. Конструирование матриксов-носителей на основе объемных пористых материалов из биодеградируемых полимеров, характеризующихся биосовместимостью, а также возможностью регулировать время биорезорбции имплантата, является одним из новейших направлений в биотехнологии. Разработка полимерных носителей для внедряемых лекарственных препаратов и клеточных культур в виде трехмерных (губки, пространственные сетки) тонкоструктурированных полимерных матриксов составляет ключевую проблему для имплантационных хирургических материалов. Поскольку костная ткань является композиционным материалом, содержащим фосфаты кальция (ФК) и органические компоненты (коллаген, коллагеновые и неколлагеногме белки), такой состав позволяет нести механические нагрузки, которые являются критичными, например, для керамических костных имплантатов. Поэтому перспективным является использование композиционных материалов, содержащих как неорганические компоненты (ФК), так и органические компоненты. Помимо коллагена, желатина и хитозана, в качестве органического компонента может использоваться альгинат натрия. Альгинат натрия является природным полисахаридом, который получают из бурых водорослей, или ламинарии японской. Известно (Патент РФ №2326137 Малесса Р. Способ получения содержащих альгинат пористых формованных изделий), что альгинат натрия взаимодействует с хлоридами многовалентных металлов, образуя нерастворимые в воде гидрогели. Это свойство широко используется для сшивания пленок и объемных материалов из гидрогелей альгината. В изобретении описан способ получения объемных пористых материалов из альгината натрия. Однако, использование альгината натрия вкачестве матрикса для клеточных культур не вполне удовлетворяет требованиям, предъявляемым к материалу матрикса, т.к. пролиферация клеток на поверхности альгината затруднена, данный материал вызывает частичную гибель клеток. В связи с этим для биомедицинских применений используют смесевые материалы, например, смеси метилцеллюлозы и альгината (Fadeeva I. V. et al. Methylcellulose films partially crosslinked by iron compounds for medical applications //Materials Today Communications. - 2019. - T. 18. - C. 54-59).

Известен способ получения нетканых материалов на основе хитозана, содержащих поливинилпирролидон (ПВП), поливиниловый спирт или другими полимерами многоцелевого назначения, используемыми в медицине (Патент РФ №2031661 Средство для лечения ран и оказания первой медицинской помощи /Адамян А.А., Полевов В.Н., Климчук Н.Е. и др.). Недостатком данных материалов является присутствие в их составе хитозана, который до настоящего времени не разрешен к использованию в медицине внутри организма.

В качестве прототипа нами выбрана наиболее близкая к настоящему изобретению статья (Каралкин П. А. и др. Биосовместимость и остеопластические свойства минерал-полимерных композиционных материалов на основе альгината натрия, желатина и фосфатов кальция, предназначенных для трехмерной печати костнозамещающях конструкций //Гены и клетки. - 2016. - Т. 11. - №. 3.) В данной статье описан способ получения пористых трехмерных матриксов на основе желатина и альгината натрия, содержащих фосфаты кальция, с использованием трехмерной печати. Полученные результаты свидетельствуют о целесообразности и перспективности использования трехкомпонентных минерал-полимерных композиционных материалов на основе альгината, желатина и октакальциевого фосфата в качестве «чернил» для 3D-печати остеопластических конструкций. К недостаткам описанного способа получения относится использование в качестве одного из полимерных материалов желатина - полимера животного происхождения. Как известно, органические соединения животного происхождения могут содержать ксеногенные факторы, влияние которых на организм человека недостаточно изучено.

Задачей настоящего изобретения является создание высокопористого биосовместимого материала, содержащего равномерно распределенные наноразмерные ФК, приближенного по структуре к естественной костной ткани человека, и не содержащего ксеногенных факторов.

Техническим результатом настоящего изобретения является создание биосовместимого пористого минерал-полимерного материала, состоящего из ПВП, альгината натрия (alg), в котором наноразмерные фосфаты кальция (ФК), равномерно распределены в объеме полимера.

Технический результат достигается тем, что по способу получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция (дикальцийфосфат дигидрат (ДКФД), аморфный фосфат кальция с соотношением Са/Р=1,5 (АФК), осажденный гидроксиапатит (ОГА), карбонатгидроксиапатит (КГА)), включающему синтез in situ фосфатов кальция в 2%-ном водном растворе ПВП, при температуре реакционной смеси от 37 до 90°С, согласно изобретению, через 30 мин после завершения синтеза фосфатов кальция в реакционную смесь добавляют 2%-ный водный раствор альгината натрия, так, чтобы массовое соотношение полимеров (ПВП: alg) находилось в пределах от 0,5 до 4, перемешивают в течение 30 мин, после чего реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора в течение 10 мин, после чего вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10°С до -18°С и высушивают в лиофильной сушилке в течение 10-12 часов.

Сущность изобретения состоит в синтезе наноразмерных ФК in situ, в растворе, содержащем ПВП, последующем добавлении 2%-ного раствора alg, вспенивании реакционной массы с помощью сжатого воздуха из компрессора в течение 10 мин, обработкой вспененной массы 5%-ным водным раствором комплексного соединения салицилата железа и высушиванием в лиофильной сушилке в течение 10-12 часов. В результате осаждения ФК в растворе ПВП в ячейках полимерной сетки, образованной макромолекулами ПВП, формируются наноразмерные частицы ФК. Поскольку ФК в растворе ПВП осаждаются при непрерывном перемешивании, то в результате распределение ФК в растворе ПВП является равномерным. При добавлении в реакционную смесь 2%-ного водного раствора альгината натрия происходит образование геля за счет частичного сшивания альгината натрия фосфатами кальция. При пропускании воздуха через гель пузырьки воздуха формируют внутри геля систему взаимосвязанных пор. Далее вспененную массу фиксируют посредством обработки 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают при -10 -18°С и высушивают в лиофильной сушилке в течение 10-12 часов. В процессе сушки происходит сублимация кристаллов льда (переход из твердого состояния вгазообразное, минуя жидкое) из вспененного материала через систему взаимосвязанных пор. Структура материала при этом сохраняется. При погружении пористого минерал-полимерного материала в растворы, содержащие воду, происходит набухание материала, в результате проникновения молекул воды между молекулами полимеров, при этом структура материала сохраняется от нескольких часов до нескольких суток. Через 1-5 суток происходит полное растворение материала. Изменяя соотношение ПВП и alg, можно регулировать скорость растворения материала в водных растворах, что является ценным свойством для использования пористого материала при замещении дефектов твердых и мягких тканей человека.

Пример 1.

Готовят 200 мл 2%-ного раствора ПВП растворением 4 г ПВП с молекулярной массой 12000 кДа в 196 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 1 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 10 мл раствора нитрата кальция концентрации 0,01 моль/л, перемешивают при температуре 25°С в течение 30 мин, после чего добавляют 50 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=4:1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором, и пропускают в гель воздух в течение 10 мин. Вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -10°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 70-80%, устойчивостью в водных растворах в течение 2 суток. Определенный методом ПЭМ фазовый состав ФК соответствует ДКФД. На рис. 1 приведено СЭМ изображениематериала, на котором видны частицы ДКФД размером которых не более 100 нм, равномерно распределенные в объеме полимера.

Пример 2.

Готовят 100 мл 2%-ного раствора ПВП растворением 2 г ПВП с молекулярной массой 12000 кДа в 98 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 6 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 10 мл раствора хлорида кальция концентрации 0,01 моль/л, перемешивают при температуре 90°С в течение 30 мин, после чего добавляют 100 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором, и пропускают в гель воздух в течение 5 мин. Вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -18°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 80-85%, устойчивостью в водных растворах в течение 1 суток. Определенный методом ПЭМ фазовый состав ФК соответствует апатиту.

Пример 3.

Готовят 100 мл 2%-ного раствора ПВП растворением 2 г ПВП с молекулярной массой 12000 кДа в 98 мл дистиллированной воды. В реактор, снабженный лопастной верхнеприводной мешалкой, помещают полученный раствор ПВП, добавляют 2 мл раствора гидрофосфата аммония концентрации 0,1 моль/л, затем капельно, при постоянном перемешивании добавляют 3 мл раствора хлорида кальция концентрации 0,1 моль/л, перемешивают при температуре 25°С в течение 30 мин, после чего добавляют 10 мл 2%-ного водного раствора альгината натрия (массовое соотношение ПВП:алг=10:1) и продолжают перемешивание в течение 20 мин. В образовавшийся гель погружают трубку, соединенную с компрессором и пропускают в гель воздух в течение 5 мин. Вспененную массу обрабатывают 5%-ным водным раствором обрабатывают 5%-ным водным раствором комплексного соединения железа (+3) с салициловой кислотой, замораживают в морозильной камере при -18°С в течение 8-10 часов, после чего помещают в лиофильную сушилку и высушивают в течение 10-12 часов.

Полученный материал характеризуется пористостью 70-80%, в водных растворах материал растворяется в течение 60 мин. Определенный методом ПЭМ фазовый состав ФК соответствует аморфному фосфату кальция (АФК). Размер частиц АФК - 40-50 нм.

Способ получения пористых материалов из альгината натрия и поливинилпирролидона, содержащих фосфаты кальция, включающий синтез in situ фосфатов кальция в 2%-ном водном растворе поливинилпирролидона при температуре реакционной смеси от 37 до 90°С, перемешивание смеси, пропускание через смесь воздуха для вспенивания массы, обработку вспененной массы раствором салицилата железа, формование и высушивание смеси в лиофильной сушилке, отличающийся тем, что через 30 мин после завершения синтеза фосфатов кальция в реакционную смесь добавляют 2%-ный водный раствор альгината натрия так, чтобы массовое соотношение полимеров (ПВП:alg) находилось в пределах от 0,5 до 4, перемешивают в течение 30 мин, после чего реакционную смесь вспенивают пропусканием через нее воздуха с использованием компрессора в течение 10 мин, после чего вспененную массу обрабатывают 5%-ным водным раствором комплексного соединения железа (3+) с салициловой кислотой, замораживают в морозильной камере при температуре от -10 до -18°С и высушивают в лиофильной сушилке до полного удаления влаги.



 

Похожие патенты:

Группа изобретений относится к биотехнологии и области сыроделия. Порошок частиц альгинатной камеди в непокрытой форме характеризуется содержанием сухих твердых веществ от 80 до 100% вес./вес., содержит от 0,4 до 1,6% вес./вес.

Изобретение относится к области биотехнологии, в частности к композициям гомогенных биоразлагаемых пленок, которые можно использовать для производства различных изделий промышленного, бытового и медицинского назначения.

Изобретение относится к улучшенному способу получения быстрорастворимого альгината натрия путем обработки альгината натрия раствором модифицирующего агента. При этом в качестве модифицирующего агента используют водорастворимую соль кальция, в количестве, соответствующем соотношению 4-20 мг кальция на 1 г альгиновой кислоты, содержащейся в альгинате натрия, и обработку ведут в условиях, исключающих растворение альгината натрия.

Изобретение относится к производству лекарственных форм в виде микрокапсул, содержащих фосфолипидные мицеллы (липосомы), в частности к технологии создания оболочек различного состава для таких микрокапсул, обладающих заданными свойствами.

Изобретение относится к полимерно-минеральным композициям, преимущественно для строительных целей, применяемым, например, при монтаже и ремонте строительных конструкций и деталей на основе цементов, бетонов и других силикатных материалов, в частности, в качестве замазок, для тепло- и гидроизоляции сооружений, резервуаров и их отдельных частей, трубопроводов и т.п.

Изобретение относится к химии и технологии высокомолекулярных природных соединений, а именно, к способу получения коллаген-альгинатного материала, и может быть использовано в медицине в качестве покрытий для ран и ожогов и т.

Настоящее изобретение относится к композиции оболочки кабеля, способу получения кабеля, оболочке кабеля и кабелю, например кабелю низкого напряжения или кабелю питания, или коммуникационному кабелю связи.

Настоящее изобретение относится к способу получения кабеля питания и кабелю питания. Кабель питания содержит по меньшей мере одну жилу, содержащую проводник и вспененный и сшитый слой изоляции, окружающий указанный проводник.

Настоящее изобретение относится к композиции пластифицированного поливинилхлорида (ПВХ) для экструзии вспененного материала. Композиция представляет собой сухую смесь, содержащую 30-60 % мас.

Изобретение относится к полимерным композициям для получения вспененного материала на основе полифенола, содержащим изоцианат, кислотный катализатор и танины. Композиция имеет смешанную танин-фуран-изоцианатную структуру, в которой танины входят в состав смолы, выполняющей для композиции функцию реагента, при этом указанная смола представляет собой полифенольную смолу на основе танина, включающую, по меньшей мере, вещество, вступающее в реакцию с танинами в присутствии кислотного катализатора, и, по меньшей мере, вещество, вступающее в реакцию с изоцианатом в присутствии кислотного катализатора, и абсолютно не содержит низкокипящих растворителей.

Изобретение относится к способу получения разбухших гранул из расплава полимера, содержащего вспенивающий агент. Способ получения вспененных частиц термопластичного полиуретана включает следующие стадии.

Изобретение относится к композиционному материалу, включающему чешуйчатые наполнители, состоящие из неорганического материала и связующей смолы, которая представляет собой термореактивную смолу, которая связывает наполнители.

Изобретение относится к резиновой композиция и шине. Резиновая композиция включает компонент на основе диенового каучука, мас.ч на 100 мас.ч.

Изобретение относится к композитной панели с ячеистой термореактивной матрицей, к способу изготовления этой панели и к структуре для покрытия стенки, образованной соединением таких панелей и обеспечивающей теплоизоляцию стенки по отношению к криогенным текучим средам, противопожарную защиту и/или герметичность по отношению к этим текучим средам.

Изобретение относится к композиции добавок для ингибирования подвулканизации в композиции полиуретанового пеноматериала. Композиция добавки включает: дериватизированный гидрохинон с содержанием более чем 5-15% по массе, причём дериватизированный гидрохинон представляет собой 2,5-ди-трет-амил-гидрохинон; дериватизированный лактон с содержанием 10-20% по массе, причём дериватизированный лактон представляет собой где R1 и R3 независимо выбраны из группы, состоящей из H, F, Cl, Br, I, C1-C20 алкилов, C1-C20 циклоалкилов, C1-C20 алкоксигрупп, C7-C20 фенилалкилов и фенильных групп; q представляет собой положительное целое число от 1 до 20 и t означает положительное целое число от 0 до 20, и где q+t имеет значение, которое равно или больше 3, и дериватизированное фенольное соединение с содержанием 70-80% по массе, причём дериватизированное фенольное соединение представляет собой (а) изо-октил-3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионат или (b) смесь сложных эфиров 3-(3,5-ди-трет-бутил-4-гидроксифенил)пропионовой кислоты и C-13 - C-15 спиртов.
Настоящее изобретение раскрывает способ изготовления вспенивающего вещества с высокой температурой вспышки. Получают вспенивающее вещество с высокой температурой вспышки путем обработки альдегида спиртом в присутствии кислого катализатора при температуре от 75-80°С для образования смеси.

Изобретение относится к порошкообразной растворимой в воде катионогенной полимерной композиции, используемой для промотирования флокуляции при разделении твердой и жидкой фаз.

Изобретение относится к способам получения кремнийоксидных эластомерных композитов с использованием дестабилизированной дисперсии никогда не подвергавшегося сушке, или свежеприготовленного, осажденного диоксида кремния.

Настоящее изобретение относится к грунтовочной композиции, отвержденному грунтовочному покрытию, подложке, многослойному покрытию, способу нанесения покрытия и грунтовочной системе.
Наверх