Способ формирования активной ложной цели по дальности

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия. Способ формирования активной ложной цели по дальности базируется на установке на объекте лазерного приемопередающего устройства, приеме лазерным приемопередающим устройством спонтанного излучения передающего лазера дальномера и измерении его временных и энергетических параметров, определении по их значениям момента времени приема излучения основного импульса передающего лазера дальномера tO и требуемых энергетических и временных параметров последовательности помеховых лазерных импульсов, формировании и излучении лазерным приемопередающим устройством в промежуток времени ΔtП, равный tС<ΔtП<tО, с требуемыми энергетическими и временными параметрами случайной последовательности помеховых лазерных импульсов на длине волны излучения передающего лазера дальномера в направлении лазерного дальномера, где tС - момент времени регистрации спонтанного излучения передающего лазера дальномера, прекращении излучения случайной последовательности помеховых лазерных импульсов приемопередающим устройством в момент времени приема основного импульса передающего лазера дальномера tО и возобновлении излучения случайной последовательности длительностью ΔtП помеховых лазерных импульсов приемопередающим устройством в момент времени, равный tО+Δt, где Δt - средний интервал между импульсами последовательности помеховых импульсов. Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности помехового воздействия лазерным дальномерам. 2 ил.

 

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия.

Известен способ (см., например, [1]) постановки пассивных помех лазерным дальномерам, основанный на перенаправлении, делении и задержке входного сигнала дальномера многожильным волоконно-оптичеким жгутом с жилами различных длин и разностями длин жил не меньше разрешающей способности дальномера. Недостатком способа является формирование пассивной помехи путем перенаправления и деления входного сигнала дальномера на последовательность импульсов, что приводит к низкой эффективности помехового воздействия по энергетическому критерию. Способ не обеспечивает временное опережение импульса дальнометрирования, что также снижает эффективность помехового воздействия при оценке дальности по первому принятому импульсу.

Наиболее близким по технической сущности и достигаемому результату (прототипом) является способ (см., например, [2]) создания активных помех лазерным средствам дальнометрирования, основанный на установке на защищаемом объекте лазерных излучателей, работающих на длинах волн дальномеров противника, и в преддверии ведения боевых действий генерации непрерывной ими последовательности импульсов в определенном секторе в сторону противника, период следования которых меньше времени прохождения измерительного импульса дальномера противника до защищаемого объекта и обратно с длительностью импульсов 10-40 нс и мощностью, обеспечивающей срабатывание фотоприемного устройства дальномера противника, изменении величины угловой расходимости лазерного излучения в зависимости от дальности до противника, изменении для обеспечения ввода случайного ложного значения дальности в дальномер противника частоты следования импульсов лазерного излучения во времени случайным образом в диапазоне частот 40-150 кГц. Недостатком способа является создание помех без учета факта функционирования дальномера, что приводит к дополнительным неоправданным энергозатратам средств помех и демаскирует их. Случайный характер частоты следования помеховых импульсов предполагает соответственно случайный прием их дальномером, что может привести к отсутствию помехового импульса на входе помехозащищенного приемного устройства дальномера.

Техническим результатом, на достижение которого направлено предлагаемое изобретение, является повышение эффективности помехового воздействия лазерным дальномерам.

Сущность изобретения заключается в приеме спонтанного излучения лазерного дальномера, обеспечивающего временное опережение последовательности энергетически адаптивных помеховых импульсов на входе лазерного дальномера.

Технический результат достигается тем, что в известном способе формирования активной ложной цели по дальности, основанном на установке на объекте лазерного приемопередающего устройства, принимают лазерным приемопередающим устройством спонтанное излучение передающего лазера дальномера и измеряют его временные и энергетические параметры, по значениям которых определяют момент времени приема излучения основного импульса передающего лазера дальномера tO и требуемые энергетические и временные параметры последовательности помеховых лазерных импульсов, формируют и излучают лазерным приемопередающим устройством в промежуток времени ΔtП равный tС<ΔtП<tО с требуемыми энергетическими и временными параметрами случайную последовательность помеховых лазерных импульсов на длине волны излучения передающего лазера дальномера в направлении лазерного дальномера, где tС - момент времени регистрации спонтанного излучения передающего лазера дальномера, прекращают излучать случайную последовательность помеховых лазерных импульсов приемопередающим устройством в момент времени приема основного импульса передающего лазера дальномера tО и возобновляют излучение случайной последовательность длительностью ΔtП помеховых лазерных импульсов приемопередающим устройством в момент времени равный tО+Δt, где Δt - средний интервал между импульсами последовательности помеховых импульсов.

Помеховое воздействие лазерным средствам дальнометрирования в основном направлено на обеспечение ошибочного принятия решения по дальности [см., например, 1, 2]. Поэтому в зависимости от метода оценки расстояния лазерные дальномеры используют различные способы помехозащиты. Одним из таких способов является временное ограничение по дальности (стробирование) [см., например, 3 стр. 56]. Следовательно, при условии приема основного импульса излучения передающего лазера дальномера, средство постановки помех может «не успеть» сформировать помеховый импульс в строб приемного канала. А предварительное создание случайной последовательности импульсов приводит к дополнительным неоправданным энергозатратам, демаскировке и к случайному результату подавления дальномера. Лазерные дальномеры функционируют по основному импульсу, так как он обеспечивает энергетически более устойчивый процесс дальнометрирования. Одним из путей повышение быстродействия помехового средства является прием спонтанного излучения лазерного дальномера, предшествующего основному [см., например, 4, стр. 92]. В зависимости от типа лазера время задержки между спонтанным и индуцированным излучениями обеспечивают требуемое время опережения излучения помехового импульса [см., например, 4, стр. 129].

Заявленный способ поясняется схемой, представленной на фигуре 1, где приняты следующие обозначения: 1 - лазерный дальномер; 2 - объект дальнометрирования; 3 - средство постановки помех; 4 - излучение лазерного дальномера; 5 - излучение средства помех; 6 - спонтанное излучение лазерного дальномера; 7 - основное излучение лазерного дальномера; 8 - помеховые импульсы (JC - интенсивность принимаемого излучения лазерного дальномера, JП - интенсивность помехового излучения, t - время, ΔtС - интервал времени формирования спонтанного излучения лазерного дальномера, ΔtП - интервал времени формирования и излучения последовательности помеховых импульсов лазерному дальномеру, tС - момент времени регистрации спонтанного излучения лазерного дальномера, tО - момент времени регистрации основного излучения лазерного дальномера, Δt - средний интервал между импульсами последовательности помеховых импульсов.).

Излучение 4 лазерного дальномера 1, падающее на объект 2, принимается установленным средством постановки помех 3. Динамика формирования излучения лазерным дальномером 1 включает два последовательных этапа: этап формирования спонтанного (под спонтанным излучением понимается совокупность спонтанного и спонтанно-индуцированного излучений) 6 и этап основного излучений 7 [см., например, 4, стр. 110-111, 128-131]. Прием спонтанного излучения 6 передающего модуля лазерного дальномера 1 обеспечивает временной ресурс для излучения помеховых импульсов [см., например, 4, стр. 109]. При этом разделение спонтанного излучения 6 от основного 7 можно осуществить по их частотным характеристикам. Поэтому первоначально приемное устройство средства постановки помех 3 принимает спонтанное излучение 6 передающего модуля лазерного дальномера 1, которое регистрируется в момент времени tС. Факт регистрации спонтанного излучения 6 является управляющей командой для формирования случайной последовательности помеховых импульсов 8 лазерному дальномеру 1. Динамика изменения интенсивности спонтанного излучения 6 позволяет определить момент времени излучения основного 7 импульса передающего лазера дальномера 1 tО и его энергетические характеристики [см., например, 4, стр. 109]. Поэтому средство постановки помех 3 измеряет временные и энергетические параметры спонтанного излучения 6, по значениям которых определяет момент времени прихода (регистрации) основного импульса 7 передающего лазера дальномера tО 1 и требуемые энергетические и временные параметры помеховых лазерных импульсов 8. Адаптация энергетических параметров помеховых лазерных импульсов 8 необходима для их формирования с равными энергетическими характеристиками отраженному от объекта основному импульсу 7 дальномера в интересах преодоления возможной селекции по пороговому критерию. Передающий модуль средства постановки помех 2 формирует случайную последовательность помеховых импульсов 8 с требуемыми энергетическими параметрами на длине волны основного излучения лазерного дальномера 1 за интервал времени равный tС<ΔtП<tО и излучает ее в направлении 5 местоположения лазерного дальномера 1. Передающий модуль средства постановки помех 2 прекращает излучать случайную последовательность помеховых лазерных импульсов приемопередающим устройством в момент времени приема основного импульса передающего лазера дальномера и возобновляет ее излучение такой же длительностью ΔtП в момент времени равный tО+Δt. Таким образом, лазерный дальномер 1 оценивает дальность до объекта 2 по первому принятому помеховому импульсу 8, а случайная их последовательность снижает возможности его помехозащиты.

На фигуре 2 представлена блок-схема устройства, с помощью которого может быть реализован предлагаемый способ. Блок-схема устройства включает: приемный блок спонтанного излучения лазерного дальномера 9; блок обработки и управления 10, передающий блок 11.

Устройство работает следующим образом. Приемный блок спонтанного излучения лазерного дальномера 9 обнаруживает спонтанное излучение лазерного дальномера, вырабатывает сигнал и передает его в блок обработки и управления 10. Блок обработки и управления 10 определяет время обнаружения спонтанного излучения, вычисляет требуемое время излучения помехового импульса и его энергию, вырабатывает сигнал и передает его в передающий блок 11. Передающий блок 11 формирует помеховый импульс и излучатель его в требуемый момент времени.

Таким образом, у заявляемого способа появляются свойства, заключающиеся в повышении эффективности помехового воздействия лазерным дальномерам за счет приема спонтанного излучения лазерного дальномера, обеспечивающего временное опережение энергетически адаптивной последовательности помеховых импульсов входе лазерного дальномера. Тем самым предлагаемый авторами способ устраняет недостатки прототипа.

Предлагаемое техническое решение является новым, поскольку из общедоступных сведений неизвестен способ формирования активной ложной цели по дальности, основанный на установке на объекте лазерного приемопередающего устройства, приеме лазерным приемопередающим устройством спонтанного излучения передающего лазера дальномера и измерении его временных и энергетических параметров, определении по значениям которых момента времени приема излучения основного импульса передающего лазера дальномера tО и требуемых энергетических и временных параметров последовательности помеховых лазерных импульсов, формировании и излучении лазерным приемопередающим устройством в промежуток времени ΔtП равный tС<ΔtП<tО с требуемыми энергетическими и временными параметрами случайной последовательности помеховых лазерных импульсов на длине волны излучения передающего лазера дальномера в направлении лазерного дальномера, где tС - момент времени регистрации спонтанного излучения передающего лазера дальномера, прекращении излучении случайной последовательности помеховых лазерных импульсов приемопередающим устройством в момент времени приема основного импульса передающего лазера дальномера tО и возобновлении излучения случайной последовательности длительностью ΔtП помеховых лазерных импульсов приемопередающим устройством в момент времени равный tО+Δt, где Δt - средний интервал между импульсами последовательности помеховых импульсов.

Предлагаемое техническое решение практически применимо, так как для его реализации могут быть использованы оптические и оптико-электронные узлы и устройства. Так в качестве помехового генератора могут быть использованы полупроводниковые лазеры, быстродействие и энергетические параметры которых обеспечат требуемое опережение помехового импульса и его уровень. Разделение спонтанного и основного излучения лазерного дальномера может быль осуществлено по их частотным характеристикам.

1 Патент RU №2363017. Волоконно-оптическое устройство для противодействия лазерным дальномерам. Федотов В.Н., Федотов А.В., Потапкин Е.Н., Смирнов А.А. МПК G01S 17/00. 5 с. Регистрация 23.05.2007. Опубл. 27.07.2009. Бюл. 21.

2 Патент RU №2186409. Способ создания активных помех лазерным средствам дальнометрирования. Лесин В.А., Корнилов В.И., Кузнецов А.А. МПК G01S 17/88 G01S 7/38. 8 с. Регистрация 01.08.2000. Опубл. 27.07.2002. Бюл. 21.

3 Молебный В.В. Оптико-локационные системы. М.: «Машиностроение», 1981. 181 с.

4 Козирацкий Ю.Л., Гревцев А.И., Донцов А.А., Иванцов А.В., Кулешов П.Е. и др. Обнаружение и координатометрия оптико-электронных средств, оценка параметров их сигналов. М.: «ЗАО «Издательство «Радиотехника», 2015. 456 с.

Способ формирования активной ложной цели по дальности, основанный на установке на объекте лазерного приемопередающего устройства, отличающийся тем, что принимают лазерным приемопередающим устройством спонтанное излучение передающего лазера дальномера и измеряют его временные и энергетические параметры, по значениям которых определяют момент времени приема излучения основного импульса передающего лазера дальномера tO и требуемые энергетические и временные параметры последовательности помеховых лазерных импульсов, формируют и излучают лазерным приемопередающим устройством в промежуток времени ΔtП, равный tC<ΔtП<tO, с требуемыми энергетическими и временными параметрами случайную последовательность помеховых лазерных импульсов на длине волны излучения передающего лазера дальномера в направлении лазерного дальномера, где tC - момент времени регистрации спонтанного излучения передающего лазера дальномера, прекращают излучать случайную последовательность помеховых лазерных импульсов приемопередающим устройством в момент времени приема основного импульса передающего лазера дальномера tO и возобновляют излучение случайной последовательность длительностью ΔtП помеховых лазерных импульсов приемопередающим устройством в момент времени, равный tO+Δt, где Δt - средний интервал между импульсами последовательности помеховых импульсов.



 

Похожие патенты:

Изобретение может быть использовано для доставки мощного излучения на воздушные и космические объекты и в лазерных локационных систем наведения. Оптическая система включает устройство сканирования, передающий лазерный модуль с оптоволоконным выводом, блок фокусировки, включающий коллимирующую асферическую линзу с механизмом ее перемещения вдоль оптической оси, главная оптическая ось которой перпендикулярна плоскости торца сердцевины оптоволоконного вывода и проходит через его центр, размещенный в переднем фокусе асферической линзы, выпуклое вторичное параболическое зеркало, оптическая ось которого совпадает с главной оптической осью асферической линзы и параллельна или совпадает с оптической осью его полной параболы, отстоящей от главной оптической оси асферической линзы на расстоянии h, вогнутое главное параболическое зеркало с фокусом F, через геометрический центр которого проходит его оптическая ось, параллельная или совпадающая с оптической осью его полной параболы.

Изобретение относится к распознаванию информационных образов и может быть использовано в лазерных локационных системах для распознавания сигналов, отраженных от оптико-электронных средств (ОЭС).

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств (ОЭС) от мощного лазерного излучения.

Изобретение относится к области оптико-электронной техники и может быть использовано в лазерных локационных системах, системах оптико-электронного противодействия, а также системах защиты оптико-электронных средств от мощного лазерного излучения.

Изобретение относится к управлению лазерным излучением без подвижных частей с возможностью управления направлением, интенсивностью, частотой и фазовыми характеристиками светового излучения и может найти применение в ряде специальных областей, в оптической локации, системах управления робототехническими комплексами, в автомобильной промышленности, самолетостроении, беспилотной авиации, системах предупреждения столкновения с препятствиями, картографии и навигации, космической геодезии, системах машинного зрения, строительстве, горном деле, системах подводного зрения, при исследовании атмосферы, разминировании и при спасении людей на море и на суше.

Изобретение относится к области оптического приборостроения. Способ получения и обработки изображений, искаженных турбулентной атмосферой, включает регистрацию усредненного по атмосферным искажениям длинно-экспозиционного изображения объекта, наблюдаемого через турбулентную атмосферу, преобразование его по Фурье в область пространственного спектра, пространственную фильтрацию спектра, и восстановление улучшенного фильтрацией резкого изображения объекта при обратном Фурье преобразовании отфильтрованного пространственного спектра.

Заявляемая группа изобретений относится к способам и устройствам лазерной локации и применяется для лазерной локации объектов с подвижного носителя, в особенности с целью создания карты дорожной обстановки для обеспечения управления транспортным средством без водителя.

Изобретение относится к области кораблевождения, а именно к способам и устройствам измерения абсолютной скорости судна с использованием доплеровского лага. Достигаемый технический результат - повышение помехоустойчивости доплеровского лага и повышение точности измерения скорости судна при малых глубинах под килем.

Изобретение относится к лазерным локаторам и может быть использовано в судебной баллистике для определения направления прямого пулевого выстрела. Устройство для определения направления прямого пулевого выстрела состоит из направляющей, снабженной конусной вставкой и выполненной, например, в виде жесткой спицы, на которой закреплена фокусирующая система, соединенная посредством световода с источником лазерного излучения, при этом оптическая ось фокусирующей системы соосна с направляющей.

Группа изобретений относится к способу и системе определения текущего местоположения целевого объекта. В автоматизированном процессе используется система местного позиционирования для получения данных местоположения (т.е.
Наверх