Способ переработки оксидного ядерного топлива

Изобретение относится к ядерной энергетике и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ). Способ включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с использованием кислородвыделяющего анода из NiO или ТiO2, допированных оксидом лития в количестве не менее 1 мас. %. При этом электролиз ведут при анодной плотности тока не выше 0.3 А/см2 и температуре не выше 700°С. Изобретение позволяет одновременно сокращать выдержку топлива перед переработкой и осуществлять стабильный и длительный процесс переработки с получением чистых металлов - компонентов ядерного топлива. 3 ил.

 

Изобретение относится к ядерной энергетике, в частности, к способам переработки оксидного ядерного топлива, и может быть использовано преимущественно в замкнутом ядерном топливном цикле (ЗЯТЦ).

В настоящее время для работы большинства ядерных реакторов используется металлическое либо оксидное топливо. Для обеспечения безопасности работы топливо выгружают из реактора при достижении степени его выработки не более 15%. В основном такая необходимость вызвана изменением исходных эксплуатационных характеристик оболочек тепловыделяющих элементов, накоплением продуктов деления топлива и сложностью управления цепными реакциями при постоянном изменении условий. Отработавшее, а также отбракованное ядерное топливо направляют на хранение, после чего оно должно быть захоронено или переработано.

Действующие способы переработки выдержанного оксидного ядерного топлива включают растворение оксидов в растворах азотной кислоты с образованием среды, пригодной для последующего извлечения компонентов ядерного топлива, в том числе, путем электролиза [1]. Способы достаточно хорошо отработаны и осуществляются при относительно низких температурах. Однако такие существенные недостатки как длительная (3-7 лет) выдержка топлива перед переработкой и образование большого количества радиоактивной воды при переработке делают способ небезопасным, неэффективным и непригодным для разработки современных ядерных технологий, направленных на создание энергоэффективного и ресурсосберегающего замкнутого ядерного топливного цикла. Одним из основных положений ЗЯТЦ является своевременная переработка и регенерация отработавшего ядерного топлива.

Недостатки известных способов гидрохимической переработки оксидного ядерного топлива, включая необходимость длительной выдержки топлива перед переработкой, могут быть устранены при использовании расплавленных солей, которые являются более стабильными при их взаимодействии с радиоактивными материалами.

Так, известен способ переработки металлического и оксидного ядерного топлива, включающий электролиз расплава на основе хлорида лития с использованием анодов, содержащих U, Zr и Рu, являющимися компонентами перерабатываемого топлива, при температуре 500°С и анодной плотности тока до 0.5 А/см2 [2-4]. Существенным недостатком данного способа является достаточно быстрое накопление твердой смеси, содержащей хлорид лития и оксиды, в порах и на поверхности анодов. Это приводит к пассивации анодов, нестабильности параметров, высокой вероятности выделения хлора и отравляющих газов на аноде и быстрой остановке электролиза. При этом достигается лишь частичная переработка топлива с получением среды, пригодной для последующего извлечения компонентов ядерного топлива. Полная переработка оксидного ядерного топлива подобным способом возможна лишь при многократном повторении электролиза, а также операций по отделению компонентов анода от твердой смеси.

Проблемы пассивации анодов, а также выделения хлора и отравляющих газов могут быть частично устранены при электролизе расплавов на основе хлорида лития с использованием кислород-выделяющих анодов.

Для этого разработаны способы переработки оксидного ядерного топлива, включающие электролиз расплава на основе хлорида лития, при котором протекают процессы электровыделения лития на катоде, вторичного восстановления литием оксидных компонентов ядерного топлива с образованием металлов и оксида лития, а также выделение кислорода из оксида лития на кислород-выделяющем аноде [5-6]. Способы осуществляют в диапазоне температур 450-650°С при анодной плотности тока до 0.2 А/см, а в качестве анодов используют металлы из числа Pt, Au, Ag, Pd, Rh, Ru, Ni, Ni покрытый Ag, или смесь оксидов La0.33Sr0.67МnО3, преимущественно Pt.

В качестве прототипа к заявленному способу может быть принят способ переработки оксидного ядерного топлива [7]. Данный способ включает электролиз расплава на основе хлорида лития с добавкой 1.0 мас. % оксида лития, при этом электролиз ведут при анодной плотности тока 0.3 А/см2 и температуре не выше 700°С, а в качестве анода используют Pt, Rh, Pd, Ir, Au.

Недостатками такого способа являются использование относительно дорогих анодов, которые склонны к анодному растворению и к взаимодействию с оксидными компонентами расплава и перерабатываемого оксидного ядерного топлива. Это приводит к нестабильности параметров электролиза, необходимости остановки процесса электролиза для замены анода. Помимо этого растворение анода приводит к загрязнению восстанавливаемых металлов компонентами анодов.

Таким образом, из уровня техники следует, что реализованные в промышленном масштабе способы позволяют стабильно перерабатывать оксидное ядерное топливо, выдержанное в течение 3-7 лет в специальных хранилищах, в то время как разработанные известные способы [2-7] позволяют сократить время выдержки оксидного ядерного топлива, но не позволяют осуществлять стабильную и полную его переработку.

Задача настоящего изобретения состоит в разработке способа переработки отработавшего и отбракованного оксидного ядерного топлива, позволяющего одновременно сократить выдержку топлива перед переработкой и осуществлять стабильный и длительный процесс переработки с получением чистых металлов - компонентов ядерного топлива.

Для этого предложен способ переработки оксидного ядерного топлива, который, как и способ прототип, включает восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с использованием кислород-выделяющего анода, при этом электролиз ведут при анодной плотности тока не выше 0.3 А/см2 и температуре не выше 700°С. Заявленный способ отличается тем, что при электролизе используют аноды из NiO или TiO2, допированные оксидом лития Li2O в количестве не менее 1 мас. %.

В отличие от способа прототипа, в котором при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % при анодной плотности тока не выше 0.3 А/см2 и температуре не выше 700°С с использованием кислород-выделяющего анода из Pt, Rh, Pd, Ir, Au, в заявленном способе в качестве кислород-выделяющего анода используют аноды из NiO или TiO2, допированные оксидом лития в количестве не менее 1 мас. %.

В этом случае при электролизе на катоде выделяется литий, который вступает в реакции с оксидными компонентами с образованием металлов и кислород-содержащих ионов. Последние разряжаются на аноде из NiO-Li2O или TiO2-Li2O до молекулярного кислорода.

Использование анодов из NiO или TiO2, допированных оксидом лития в количестве не менее 1 мас. %, приводит к тому, что в ходе электролиза расплава хлорида лития с добавками не менее 1 мас. % оксида лития, анодной плотности тока не выше 0.3 А/см2 и температуре не выше 700°С на анодах из NiO-Li2O или TiO2-Li2O не происходит формирование новых соединений с оксидом лития, как в прототипе. При этом даже при повышении анодной плотности тока выше 0.3 А/см2 такие аноды не склонны к анодному растворению; ограничение анодной плотности до 0.3 А/см2 вызвано лишь затруднениями в расплаве. Добавка в расплав 1 мас. % оксида лития является достаточной для выделения кислорода на анодах без значительных диффузионных затруднений. Это достигается и при большем ее содержании, однако повышение содержания оксида лития в расплаве более 3 мас. % не рекомендуется, т.к. отрицательно сказывается на отводе кислородсодержащих ионов из прикатодного пространства и полноте восстановления компонентов оксидного ядерного топлива. Благодаря тому, что допированные оксидом лития аноды из NiO-Li2O или TiO2-Li2O, при режимах электролиза, необходимых для восстановления лития на катоде и переработки оксидного ядерного топлива не подвергаются анодному либо химическому окислению, ресурс использования анодов значительно увеличивается, что приводит к возможности осуществления полной переработки компонентов оксидного ядерного топлива без остановки электролиза. То, что электролиз расплава хлорида лития с добавкой оксида лития рекомендуется проводить при температуре не выше 700°С, обусловлено резким возрастанием давления паров компонентов расплава.

Допирование NiO и TiO2 оксидом Li2O лития в количестве не менее 1 мас. % позволяет, во-первых, снизить электросопротивление данных оксидных смесей, а во-вторых, исключает протекание нестационарных побочных процессов неравномерного внедрения оксида лития в кристаллические решетки NiO и TiO2. Оба фактора являются существенными для стабильной работы анодов из NiO-Li2O и TiO2-Li2O при электролизе. При этом нужно отметить, что повышение содержания оксида лития в анодах из NiO и TiO2 свыше 2 мас. % неэффективно, и может приводить к разрушению анодов.

Таким образом, заявленный способ позволяет выполнять полную переработку оксидного ядерного топлива без остановки электролиза и необходимости замены анода.

Технический результат, достигаемый заявленным способом, заключается в повышении ресурса использования анодов при полной переработке оксидного ядерного топлива.

Изобретение иллюстрируется рисунками, где на фиг. 1 приведены фотографии анода из допированного оксидом лития NiO-Li2O до и после электролиза расплава; на фиг. 2 - восстановленный уран; на фиг. 3 - рентгенограмма восстановленного урана.

Экспериментальную апробацию способа осуществляли на примере переработки оксида урана UO2, являющимся одним из основных компонентов оксидного ядерного топлива. Для этого сконструировали лабораторный электролизер, представляющий собой тигель из оксида MgO, в который загружали предварительно приготовленные реактивы: хлорид лития массой 120.2 г и оксид лития массой 1.22 г (1.0 мас. %). Тигель с реактивами размещали в кварцевой пробирке, верхнюю часть которой закрывали специальной фторопластовой крышкой с газоходами и отверстиями для электродов и термопары. Операции по подготовке материалов, изготовлению электродов и монтированию их во фторопластовой крышке производили на воздухе, после чего в «сухом» боксе монтировали электролизер, размещая тигель с реактивами на дне кварцевой пробирки и закрывая пробирку крышкой с электродами. В качестве анода использовали цилиндр массой 25.6 г. из NiO-Li2O, допированного 1 мас. % оксида лития, в качестве катода - проволоку из молибдена, на конце которой подвешивали контейнер из молибдена с оксидом UO2 массой 12.7 г. Параметры процесса контролировали при помощи (литиевого) электрода сравнения.

Лабораторный электролизер в закрытой крышкой кварцевой пробирке помещали в печь сопротивления и нагревали до температуры 625°С. После расплавления смеси хлорида лития и оксида лития электроды погружали в расплав и осуществляли электролиз расплавленной смеси при анодной плотности тока 0.3 А/см2 и катодной плотности тока не ниже 0.5 А/см2. В ходе электролиза фиксировали величину анодного перенапряжения и по его резкому повышению определяли окончание процесса. В ходе длительного (12 часов) электролиза анодное перенапряжение составляло 0.35±0.04 В, а напряжение между анодом и катодом 3.7±0.06 В, что свидетельствует о стабильности параметров электролиза.

По окончанию электролиза электроды извлекали из расплава и охлаждали электролизер с кварцевой пробиркой до комнатной температуры. После охлаждения анод и полученный порошок урана отмывали от расплава, взвешивали и анализировали. Масса анода из NiO-Li2O не изменилась, а масса полученного урана составила 11.2 г, что соответствует полному восстановлению оксида UO2. При этом примеси Ni и других элементов в уране обнаружены не были.

Аналогичный результат был получен при переработке оксида UO2 электролизом расплава хлорида лития с добавкой 2.23 мас. % Li2O и использованием из анода TiO2-Li2O. Это связано со схожестью основных закономерностей анодного процесса на анодах из допированных оксидом лития NiO-Li2O и TiO2-Li2O при электролизе расплава хлорида лития с добавкой оксида лития.

Для оптимизации свойств расплава и параметров его электролиза в расплав на основе хлорида лития с добавкой оксида лития можно вводить хлориды и/или оксиды щелочных и/или щелочноземельных металлов, которые не влияют на суммарный механизм восстановления компонентов оксидного ядерного топлива.

В большинстве экспериментов по переработке оксида урана с использованием анодов из допированных оксидом лития NiO-Li2O или ТiO2-Li2O при анодной плотности тока до 0.3 А/см2 и температуре от 400 до 700°С в расплаве хлорида лития с добавкой оксида лития 1 мас. %, а также в расплавах хлорида лития с добавками хлоридов и/или оксидов щелочных и/или щелочноземельных металлов было достигнуто полное восстановление оксида урана при стабильном электролизе и отсутствии расхода анодов.

Таким образом, заявленный способ переработки оксидного ядерного топлива позволяет одновременно сокращать выдержку топлива перед переработкой и осуществлять стабильный и длительный процесс переработки с получением чистых металлов - компонентов ядерного топлива.

Источники информации:

1. Оландер Д. Теоретические основы тепловыделяющих элементов ядерных реакторов, М., 1982);

2. Journal of Nuclear Materials, 2011, Vol. 414, pp. 194-199;

3. Journal of Nuclear Materials, 2014, Vol. 452, pp. 517-525;

4. Journal of Nuclear Science and Technology, 2010, Vol. 47, pp. 1140-1154);

5. Electrochemistry Communications, 2015, Vol. 55, pp. 14-17;

6. Journal of Nuclear Materials, 2017, Vol. 489, pp. 1-8;

7. Journal of Radioanalytical and Nuclear Chemistry, 2017, Vol. 311, pp. 809-814.

Способ переработки оксидного ядерного топлива, включающий восстановление компонентов оксидного ядерного топлива при электролизе расплава хлорида лития с добавкой оксида лития в количестве не менее 1 мас. % с использованием кислородвыделяющего анода, при этом электролиз ведут при анодной плотности тока не выше 0.3 А/см3 и температуре не выше 700°С, отличающийся тем, что при электролизе используют аноды из NiO или TiO2, допированных оксидом лития в количестве не менее 1 мас. %.



 

Похожие патенты:

Изобретение относится к способам переработки облученного ядерного топлива (ОЯТ) и предназначено для использования в головных операциях радиохимической технологии переработки ОЯТ реакторов ВВЭР-1000 с целью отделения трития.

Изобретение может быть использовано при электрохимической переработке отработавшего ядерного топлива (ОЯТ) реакторов на быстрых нейтронах. Способ характеризуется тем, что в расплавленный электролит на основе эвтектической смеси хлоридов лития и калия после выделения из него актинидов, лантанидов и щелочноземельных металлов добавляют хлорид переходного металла, в качестве которого используют дихлорид кадмия, при этом процесс ведут при температурах не выше 350°С.

Изобретение относится к области переработки отработавшей топливной композиции жидкосолевого реактора. Композиционная смесь для осаждения оксидов делящихся и осколочных нуклидов из расплава эвтектической смеси LiF-NaF-KF без изменения состава эвтектической смеси, содержащая Li2O, NaF, KF при следующем соотношении компонентов, мол.
Изобретение относится к радиохимической технологии и может быть использовано при переработке отработавшего ядерного топлива и производстве смешанного уран-плутониевого топлива.
Изобретение относится к радиохимической технологии и может быть использовано при переработке облученного ядерного топлива (ОЯТ). Способ растворения волоксидированного ОЯТ включает обработку ОЯТ в гетерогенной системе с участием диоксида азота.
Изобретение относится к области радиохимической технологии и может быть использовано для отделения трития на головных операциях процесса переработки облученного ядерного топлива.

Изобретение относится к способам очистки загрязненного вредными изотопами сырья для использования его в дальнейшем для получении восстановленного урана для ядерного топлива.
Изобретение относится к области переработки отработавшего ядерного топлива (ОЯТ). Способ извлечения металлов платиновой группы из продукта кислотного растворения волоксидированного ОЯТ заключается в том, что полученное после волоксидации ОЯТ растворяют в азотной кислоте в диапазоне температур 83-86°C в течение 4-5 часов с получением остаточного содержания в продукте азотной кислоты в диапазоне 1,42-2,3 моль/л, урана в диапазоне 480-600 г/л, термостатируют полученный продукт в диапазоне температур 69-80°C в течение 2-48 часов, вносят флокулянт и диспергируют реакционную смесь, проводят накопление осадка в донной части аппарата за счет седиментационного осаждения в диапазоне температур 35-57°C в течение 6-24 часов.

Изобретение относится к способам переработки нитридного отработавшего ядерного топлива (ОЯТ). Способ переработки нитридного отработавшего ядерного топлива в солевых расплавах включает катодное восстановление ионов урана, подготовку электролита в аппарате для переработки нитридного отработавшего ядерного топлива.

Изобретение относится к пассивной системе фильтрации для зоны загрузки топлива, имеющей бассейн отработанного топлива в ядерном реакторе. Пассивная система фильтрации уменьшает выпуск в атмосферу частиц, таких как радиоактивные частицы, образуемые в случае кипения бассейна отработанного топлива.

Изобретение относится к электрохимическому получению наноразмерных порошков интерметаллидов гольмия и никеля, которые могут быть использованы в качестве катализаторов в химической и нефтехимической промышленности, в водородной энергетике для обратимого сорбирования водорода, а также для создания магнитных материалов.

Изобретения относятся к электролитическому производству редкоземельных металлов. Электролитическая ячейка включает корпус, выполненный с одним или более наклонными каналами на дне корпуса для стекания расплавленных редкоземельных металлов.
Изобретение относится к электрохимическому синтезу магнитных материалов. Получают порошок интерметаллидов самария и кобальта.

Изобретение относится к электролитическому получению сплавов. Получают сплав неодим-железо, содержащий 78-96 мас.% неодима.
Изобретение относится к электрохимическому получению порошкового иридия с высокой удельной поверхностью, который может быть использован в устройствах катализа горения многокомпонентных топлив при температурах до 2100°С без изменения химического состава и потери формы.

Изобретение относится к способу получения свинца. Способ включает электролиз в расплаве галогенидов солей с использованием жидкометаллических катода и анода из чернового свинца.

Изобретение относится к установке для извлечения драгоценных металлов платиновой группы из отходов нефтехимических катализаторов, каталитических сорбентов автомобильного и водного транспорта и др.
Изобретение относится к получению топлива для энергетических реакторов. Способ получения металлического урана включает электролиз диоксида урана в расплаве хлоридов лития и калия в электролизере с графитовым анодом и металлическим катодом и выделение металлического урана на катоде и диоксида углерода на аноде.
Изобретение относится к области металлургии неметаллов, а именно к производству электролитического кремния в виде сплошных слоев толщиной от 1 мкм до 1 мм, которые могут найти применение в фотонике, полупроводниковой технике, для производства «солнечных батарей» и т.д.
Изобретение относится к цветной металлургии, в частности к получению свинца электролитическим способом. .
Наверх