Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости



Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости
Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости
Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости
Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости
Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости
Способ производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости
C21D1/02 - Изменение физической структуры черных металлов; устройства общего назначения для термообработки черных или цветных металлов или сплавов; придание ковкости металлам путем обезуглероживания, отпуска или других видов обработки (цементация диффузионными способами C23C; поверхностная обработка металлов, включающая по крайней мере один процесс, предусмотренный в классе C23, и по крайней мере другой процесс, охватываемый этим подклассом, C23F 17/00; однонаправленное отвердевание эвтектики или однонаправленное разделение эвтектик C30B)

Владельцы патента RU 2696920:

Акционерное Общество "Выксунский металлургический завод" (RU)

Изобретение относится к области металлургии, в частности к производству листового проката толщиной 12-48 мм для изготовления труб магистральных трубопроводов диаметром до 1420 мм с обеспечением доли вязкой, составляющей в изломе образцов при испытаниях падающим грузом не менее 85% при температуре испытания -20°C, ударной вязкости (KCV) при температуре испытания -40°C не менее 250 Дж/см2, высоких значений равномерного удлинения при достижении прочностных свойств в трубах из данного проката на уровне К60-К80 (Х70-Х100). После выплавки стали осуществляют ее непрерывную разливку в слябы, нагревают до температуры прокатки, проводят контролируемую горячую прокатку с ускоренным ступенчатым охлаждением и окончательным замедленным охлаждением листов в стопе. При этом горячую прокатку заканчивают в аустенитной области при температуре Ткп ±50°C, определяемой в зависимости от химического состава стали по формуле: Ткп=880-400[C]-70[Mn]+25[Si]-35[Ni]-25[Cr]-20[Cu]±30°C, ускоренное охлаждение раскатов водой осуществляют от температуры Ткп ±50°C аустенитной области со скоростью 10÷50 град./с до температуры Bs±50°C, определяемой по формуле Bs=695-320[C]-15[Cr+Cu+Ni]-25[Mn], после прекращения подачи воды на раскат осуществляется охлаждение на воздухе со скоростью 0,1÷3°C/с для выделения α-фазы и обогащения углеродом непревращенного аустенита за время t±10 c, определяемое исходя из уравнения t=94[Nb]+22[V]+40[Mo]+10[Cr]+5[Mn]-18[Si]-6[Ni]-3[Cu]-30[C], а окончательное замедленное охлаждение листов в стопы проводят со скоростью 0,01÷0,001 град./с на воздухе до 100°C. 3 табл.

 

Изобретение относится к области металлургии, в частности к производству на реверсивном толстолистовом стане листового проката толщиной 12-48 мм для изготовления труб магистральных трубопроводов диаметром до 1420 мм.

Известен способ производства проката с феррито-мартенсито/бейнитной структурой, описанный в патенте RU 2151214. По этому изобретению заготовку из стали со следующим соотношением химических элементов, мас. %: углерод - 0,05÷0,12; кремний - 0,01÷0,50; марганец - 0,4÷2,0; ниобий - 0,03÷0,12; ванадий - 0,05÷0,15; молибден - 0,2÷0,8; титан - 0,015÷0,03; алюминий - 0,01÷0,03; железо - остальное; дополнительно может содержать хром - 0,3÷1, перед проведением горячей прокатки нагревают до температуры предпочтительно в пределах 1150÷1250°С достаточной для растворения по существу всех карбонитридов ванадия и ниобия. Далее в один или несколько проходов проводят горячую прокатку заготовки: первое обжатие с суммарной деформацией на 30÷70% в температурном диапазоне, в котором происходит рекристаллизация аустенита; второе обжатие на 40÷70% в более низком температурном диапазоне, в котором не происходит рекристаллизация аустенита, но выше точки Ar3; третье обжатие на 15÷20% после охлаждения раскатов на воздухе до температуры в диапазоне между точками превращения Ar3 и Ar1. После завершения прокатки раскат ускоренно охлаждают со скоростью по меньшей мере ~25°С/с, предпочтительно ~35°С/с до температуры не выше 400°С, при которой исключено дальнейшее превращение в феррит, и, при желании, прокатанную закаленную высокопрочную листовую сталь, пригодную для производства труб для трубопровода, охлаждают воздухом до комнатной температуры.

Основным недостатком известного способа производства является то, что параметры технологии горячей прокатки и ускоренного охлаждения не связаны с химическим составом стали (кроме критических точек), поэтому являются не оптимальными для сталей различного состава с содержанием химических элементов в заявленных пределах. Кроме этого деформация в аустенито-ферритной области снижает пластичность и усиливает склонность к хрупкому разрушению в z-направлении металла листов в первую очередь в результате наклепа, выделившегося в этом температурном интервале феррита. Также недостатком этого способа производства является обязательная необходимость легирования стали молибденом в количестве не менее 0,2%, что оказывает существенные ограничения для производства проката класса прочности К60. Кроме этого добавка молибдена приводит к удорожанию стали, поэтому использование этого химического элемента не всегда является целесообразной с экономической точки зрения, особенно при производстве листового проката указанного выше класса прочности.

Наиболее близким по технологии производства толстолистового низколегированного штрипса является способ, описанный в патенте RU №2393236 (прототип), включающий выплавку стали, разливку, нагрев и горячую прокатку заготовки, ускоренное охлаждение готового проката, отличающийся тем, что выплавляют сталь следующего химического состава, мас. %: углерод 0,03-0,20, марганец 0,50-2,10, кремний 0,10-0,50, ниобий 0,01-0,15, алюминий 0,01-0,10, титан 0,005-0,05, азот 0,002-0,012, сера 0,0005-0,010, фосфор 0,003-0,050, железо - остальное, горячую прокатку заканчивают в интервале температур от (Arз+30°С) до (Arз-30°С), последующее ускоренное охлаждение осуществляют в два этапа: на первом этапе со скоростью 10-30 град/с до температуры 650-550°С, затем после паузы 3-10 с на втором этапе со скоростью 5-20 град/с до температуры 550-450°С, а последующее охлаждение на воздухе до 100°С осуществляют замедленно со скоростью 0,1-0,01 град/с.

Недостатком данного способа производства толстолистового штрипса является то, что он не обеспечивает в прокате одновременно высокой прочности, пластичности и равномерного удлинения. Кроме этого параметры технологии горячей прокатки не связаны с химическим составом стали, поэтому являются не оптимальными для сталей различного состава с содержанием химических элементов в заявленных пределах.

Технический результат предлагаемого изобретения состоит в одновременном обеспечении доли вязкой составляющей в изломе образцов при испытаниях падающим грузом не менее 85% при температуре испытания -20°С, ударной вязкости (KCV) при температуре испытания -40°С не менее 250 Дж/см2, высоких значений равномерного удлинения при достижении прочностных свойств в трубах из данного проката на уровне К60-К80 (Х70-Х100).

Технический результат достигается тем, что в предлагаемом способе производства проката для труб магистральных трубопроводов с одновременным обеспечением равномерного удлинения и хладостойкости, включающем выплавку стали, непрерывную разливку слябов, нагрев и горячую прокатку слябов с последующим ступенчатым ускоренным охлаждением и окончательным замедленным охлаждением листов в стопе, в отличие от прототипа:

- горячую прокатку заканчивают в нижнем температурном интервале аустенитной области при температуре, определяемой в зависимости от химического состава стали по формуле: Ткп=880-400С-70Mn+2SSi-35Ni-25Cr-20Cu;

- ускоренное охлаждение раскатов водой осуществляют из аустенитной области со скоростью 10÷50 град/с до температуры Bs ±50°С, определяемой по формуле: Bs=695-320[C]-15[Cr+Cu+Ni]-25[Mn];

- после прекращения подачи воды на раскат осуществляется охлаждение со скоростью 0,1÷3°С/с в течение 15÷30 секунд для выделения α-фазы и обогащения углеродом непревращенного аустенита. При этом время паузы t±10 с, выбирают исходя из уравнения: t=94[Nb]+22[V]+40[Mo]+10[Cr]+5[Mn]-18[Si]-6[Ni]-3[Cu]-30[C];

- далее осуществляют ускоренное охлаждение раскатов со скоростью 10÷50 град/с до температуры, определяемой, по формуле:

- окончательное охлаждение раскатов проводят замедлено со скоростью 0,01÷0,001 град/с на воздухе до 100°С после складирования листов в стопы.

Сущность изобретения заключается в следующем.

Сначала изготавливают непрерывно-литую заготовку из стали с заданным химическим составом. Далее из непрерывно-литых слябов в условиях реверсивного прокатного стана, оснащенного установкой ускоренного охлаждения, позволяющей проводить регламентированное ускоренное охлаждение раскатов, осуществляют изготовление листового проката заданных размеров по технологии термомеханической прокатки (ТМП).

Горячую прокатку штрипса, по предлагаемому способу, проводят по регламентируемым температурно-деформационным режимам с целью формирования в готовом прокате мелкозернистой структуры с упорядоченным распределением дефектов кристаллической решетки, обеспечивающим повышение предела текучести, ударной вязкости, доли вязкой составляющей в изломе (ДВСИ) и снижение температуры вязко-хрупкого перехода. Для того, чтобы сформировать как можно более мелкозернистую структуру в прокате, но при этом не допустить выделения феррита во время деформации, необходимо завершать деформацию при температуре, определяемой в зависимости от химического состава стали по формуле: Ткп=880-400С-70Mn+255i-3SNi-2SCr-20Cu±20°С. При превышении данной температуры, эффект от наклепа в окончательной стадии прокатки не будет максимальным, что вызовет снижение прочностных и вязкостных свойств. При завершении деформации ниже данной температуры будет происходить деформация выделившегося феррита, что приведет к снижению ударной вязкости и равномерного удлинения.

После завершения горячей прокатки раскаты подвергаются ступенчатому регламентированному охлаждению за несколько стадий. Первоначальное ускоренное охлаждение раскатов водой осуществляют из аустенитной области со скоростью 10÷50 град/с до температуры начала бейнитного превращения Bs±50°С, определяемой по формуле: Bs=695-320[C]-15[Cr+Cu+Ni]-25[Mn]. Ускоренное охлаждение на первой стадии до температуры начала бейнитного превращения позволяет получить мелкозернистый феррит без присутствия бейнита. Если температура завершения первой стадии охлаждения будет выше Bs, то образованный феррит будет большего размера, как и вторая структурная составляющая, образованная на втором этапе ускоренного охлаждения. Это приведет к снижению вязкостных свойств. Если температура завершения первой стадии охлаждения будет ниже Bs, то будет образован верхний бейнит, наличие которого плохо отразится на ударной вязкости и равномерном удлинении.

После прекращения подачи воды на раскат осуществляется замедленное охлаждение на воздухе со скоростью 0,1÷3°С/с для выделения α-фазы и обогащения углеродом непревращенного аустенита. за время, определяемое исходя из уравнения: t=94[Nb]+22[V]+40[Mo]+10[Cr]+5[Mn]-18[Si]-6[Ni]-3[Cu]-30[C] ± 10 с. Если время охлаждения на воздухе будет меньше, то обогащение остаточного аустенита углеродом пройдет не полностью и при последующем охлаждении он превратится в бейнит с наличием карбидов, что негативно отразится на ударной вязкости и равномерном удлинении. Если время охлаждения на воздухе будет больше, то аустенит начнет распадаться на феррит и карбиды, вследствие пресыщения углеродом, что также негативно отразится на ударной вязкости и равномерном удлинении.

Далее осуществляют ускоренное охлаждение раскатов со скоростью 10÷50 град/с до температуры, определяемой по формуле

Ускоренное охлаждение раскатов до температуры необходимо для стабилизации обогащенных углеродом не превращенных порций аустенита. При превышении данной температуры возможен распад аустенита на карбиды и феррит при дальнейшем замедленном охлаждении, что негативно отразится на ударной вязкости и равномерном удлинении. Если температура завершения второго этапа ускоренного охлаждения будет ниже , то возможна недостаточная стабилизация аустенита и превращение его в мартенсит. Это может вызвать значительное упрочнение металла и снижение равномерного удлинения.

Окончательное охлаждение раскатов проводят замедлено со скоростью 0,01÷0,001 град/с на воздухе до 100°С после складирования листов в стопы. Отсутствие данного этапа может стать причиной появления в металле трещин водородного происхождения.

За счет применения предлагаемого способа горячей прокатки с последующим многоступенчатым охлаждением проката обеспечивается одновременно высокая прочность, ударная вязкость, хладостойкость, пластичность, равномерное удлинение и доля вязкой составляющей при испытании падающим грузом (ДВСИ при ИПГ).

Примеры

Были произведены слябы из 4-х плавок. Химический состав плавок и химический состав стали по способу-прототипу представлены в Таблице 2. Металл выплавляли конверторным способом, подвергали внепечной обработке и разливали на криволинейной машине непрерывного литья заготовок. Для сравнения влияния способов производства по изобретению и прототипу на структуру и механические свойства проведена прокатка слябов на одноклетьевом реверсивном стане «5000» на листы различной толщины с последующим регламентированным охлаждением, в том числе с использованием УКО. Технологические параметры горячей прокатки и последующего УО сравниваемых вариантов изготовления листов приведены в табл. 2, - 3. Режимы 1-1; 1-2; 1-3; 1-4; 2-1; 2-2; 2-3; 2-4; 2-5; 3-1; 3-2; 3-3; 3-4 и 4-1 - выполнены согласно изобретению; 2-6; 2-7; 2-8 - за пределами заявленного диапазона технологических параметров изобретения; 5, 6, 7 - по способу-прототипу.

По предлагаемому способу после нагрева до температур 11554-1170°С слябы прокатывали в две стадии. Во время этапа черновой прокатки в результате многократно чередующихся актов деформации и статической рекристаллизации происходило существенное измельчение аустенитного зерна. Завершающим этапом горячей прокатки являлась деформация металла в области подавления процессов рекристаллизации. После завершения прокатки листы по изобретению подвергали многостадийному охлаждению с различными скоростями на каждой стадии. В течение первой стадии охлаждения раскаты охлаждали с различной скоростью до температуры завершения первой стадии охлаждения. Далее осуществляли паузу в охлаждении на регламентированное время. На этом этапе охлаждения листов происходило протекание полиморфного γ→α-превращения по нормальному механизму с образованием феррита полигональной морфологии и обогащением углеродом непревращенных порций аустенита. Далее для превращения по сдвиговому или промежуточному механизму оставшегося обогащенного углеродом аустенита в мартенсито-бейнитные структурные составляющие листы охлаждали с различными скоростями до температуры завершения второй стадии охлаждения. Окончательное охлаждение листов до температуры окружающей среды проводили замедленно после складирования в стопы для предотвращения образования трещин водородного происхождения.

При горячей прокатки листа по режимам за пределами заявленного диапазона температура завершения первой стадии охлаждения листа, прокатанного по режиму 2-6 была выше требуемого диапазона; при прокатке листа 2-7 время паузы между первой и второй стадией охлаждения было выше требуемого диапазона; при прокатке листа по режиму 2-8 температура завершения второй стадии охлаждения была ниже требуемого диапазона; при прокатке листа 2-9 температура конца прокатки (Ткп) была ниже допустимого диапазона температур.

Механические свойства определяли на поперечных образцах. Испытания на статическое растяжение проводили на пятикратных полнотолщинных образцах в соответствии с ГОСТ 1497 и ASTM А370, с определением временного сопротивления разрыву (σв), предела текучести (σт), отношения предела текучести к временному сопротивлению (σтв), относительного удлинения (δ5 и δ2ʹʹ) и равномерного удлинения (δp). Динамические испытания на ударный изгиб образцов с острым концентратором напряжений при отрицательных температурах -20; -40; °С проведены по ГОСТ 9454 с определением ударной вязкости (KCV), ИПГ образцов с оценкой ДВС на поверхности излома выполнены в соответствии с ГОСТ 30456-97.

При оценке механических свойств видно, что листы произведенные по предлагаемому изобретению имеют лучшую хладостойкость, равномерное удлинение и ударную вязкость по сравнению с листами, произведенными по прототипу, и листами, произведенными за пределами заявленного диапазона.

* - способ-прототип, ** - за пределами заявленного диапазона

* - способ-прототип, ** - за пределами заявленного диапазона

Способ производства проката для труб магистральных трубопроводов, включающий выплавку стали, непрерывную разливку слябов, нагрев и горячую прокатку слябов с последующим ступенчатым ускоренным охлаждением и окончательным замедленным охлаждением листов в стопе, отличающийся тем, что горячую прокатку заканчивают в нижнем температурном интервале аустенитной области при температуре Ткп ±30°C, определяемой в зависимости от химического состава стали по формуле

Ткп=880-400[С]-70[Mn]+25[Si]-35[Ni]-25[Cr]-20[Cu],

ускоренное охлаждение раскатов водой осуществляют с температуры аустенитной области Ткп ±30°C со скоростью 10÷50 град./с до температуры Bs ±50°C, определяемой по формуле

Bs=695-320[C]-15[Cr+Cu+Ni]-25[Mn],

после прекращения подачи воды на раскат осуществляют охлаждение его на воздухе со скоростью 0,1÷3°C/с за время t±10 с, определяемое по уравнению

t=94[Nb]+22[V]+40[Mo]+10[Cr]+5[Mn]-18[Si]-6[Ni]-3[Cu]-30[С],

далее осуществляют ускоренное охлаждение раскатов со скоростью 10÷50 град./с до температуры Tзо2±50°C, определяемой по формуле

окончательное замедленное охлаждение листов в стопе проводят со скоростью 0,01÷0,001 град./с на воздухе до 100°C.



 

Похожие патенты:
Изобретение относится к области металлургии, в частности к деформационно-термической обработке металлов, а точнее к способу получения листов из аустенитных высокомарганцевых TWIP сталей с энергией дефекта упаковки от 20 до 50 мДж/м2, и может быть использовано в автомобилестроении для производства несущих конструкций автомобилей.

Изобретение относится к мартенситно-ферритной нержавеющей стали с высокой коррозионной стойкостью, готовому продукту и к способам изготовления штампованных или прокатных продуктов или сортового проката и бесшовных труб из мартенситно-ферритной нержавеющей стали.

Изобретение относится к прокатному производству и может быть использовано при производстве широких горячекатаных листов из марок стали трубного сортамента, класса прочности К60.

Изобретение относится к области металлургии, а именно к листовой стали, используемой в автомобилестроении. Сталь содержит, в мас.%: 0,04≤С≤0,30, 0,5≤Mn≤4, 0≤Cr≤4, 2,7≤Mn+Cr≤5, 0,003≤Nb≤0,1, 0,015≤Al≤0,1, 0,05≤Si≤1,0, остальное – железо и неизбежные примеси.

Изобретение относится к области металлургии. Для обеспечения предела текучести > 550 МПа, предела прочности на растяжение TS > 980 МПа и повышенной пластичности и деформируемости лист получают из стали, содержащей, мас.%: 0,15 ≤ C ≤ 0,25, 1,2 ≤ Si ≤ 1,8, 2 ≤ Mn ≤ 2,4, 0,1 ≤ Cr ≤ 0,25, Al ≤ 0,5, остальное Fe и неизбежные примеси, нагревают до температуры между TA1 = Ac3 - 0,45*(Ms - QT) и TA2 = 830°C в течение по меньшей мере 30 с и охлаждают со скоростью выше 30°C/с до температуры закалки QT 180-300°C, затем лист нагревают до температуры PT перераспределения, равной 380-480°C, с выдержкой в течение времени Pt, составляющего 10-300 с, и охлаждают до комнатной температуры со скоростью охлаждения по меньшей мере 25°C/с.

Изобретение относится к области металлургии. Способ получения полуфабрикатов из высокопрочного никелевого сплава системы Ni-Fe-Co включает выплавку слитка в вакуумно-дуговой печи, деформацию слитка, предварительную горячую прокатку и окончательную холодную прокатку.

Изобретение относится к области металлургии, конкретно к производству проката толщиной до 50 мм. Для повышения прочностных свойств, ударной вязкости и твердости при сохранении достаточной пластичности предложено пять вариантов осуществления способа, при этом каждый из вариантов способа включает выплавку стали, содержащей, мас.%: углерод 0,18-0,28, кремний 0,20-0,70, марганец 0,50-1,60, фосфор не более 0,025, сера не более 0,010, никель 0,03-1,50, хром 0,03-1,00, медь 0,03-0,50, молибден 0,03-0,60, ниобий 0,01-0,08, титан 0,005-0,05, алюминий 0,035-0,08, кальций 0,001-0,01, азот не более 0,008, бор 0,001-0,005, железо и неизбежные примеси - остальное, при этом при отношении Ti/N<3,42 минимально допустимое содержание алюминия определяют из соотношения Al=0,035+(3,42×N-Ti)×1,93, где N, Ti - содержание азота и титана в стали, углеродные эквиваленты СЕТ и CEV составляют не более 0,43% и 0,60% соответственно, ее внепечную обработку, непрерывную разливку в слябы, нагрев слябов в диапазоне температур 950-1200°С, многопроходную горячую прокатку, ускоренное охлаждение до температуры 20-400°С со скоростью 9-40°С/с и отпуск при 150-400°С, причем второй вариант способа охарактеризован режимом закалки, третий вариант - режимом прокатки, четвертый и пятый варианты - режимами прокатки и закалки.

Изобретение относится к способу обработки стальной полосы, прежде всего обработки стальной полосы травлением, посредством обрабатывающей жидкости в обрабатывающей установке, причем обрабатывающая установка содержит обрабатывающую ванну с оросительной секцией и погружной секцией и причем обрабатывающая установка содержит общее улавливающее средство для обрабатывающей жидкости, а стальная полоса состоит из углеродистой стали и является непрерывной стальной полосой, ориентированной по существу горизонтально как в ее продольном, так и в поперечном направлениях и имеет верхнюю поверхность и нижнюю поверхность.

Изобретение относится к области металлургии, а именно к формуемой легковесной стали. Сталь содержит элементы в следующем соотношении, мас.%: С от 0,02 до 1,0, Мn от 5 до 9, Si 4 или менее, Р до 0,1, S до 0,1, N до 0,03, Sb от 0,003 до 0,8, предпочтительно до 0,5, по меньшей мере один из следующих карбидообразующих элементов: Al 15 или менее, Cr от 0,1 до 8, Мо от 0,05 до 2, Ti от 0,01 до 2, V от 0,005 до 1, Nb от 0,005 до 1, W от 0,005 до 1 и Zr от 0,001 до 0,3, при необходимости до 5 Ni, до 0,005 Са, до 0,01 В и от 0,05 до 2 Cu, остальное - железо и примеси, при этом соотношение Sb/C составляет 1,5 или менее.

Изобретение относится к способу обработки стальной полосы, прежде всего обработки стальной полосы травлением посредством обрабатывающей жидкости в обрабатывающей установке, причем обрабатывающая установка содержит обрабатывающую ванну с оросительной секцией и погружной секцией и общее улавливающее средство для обрабатывающей жидкости, причем стальная полоса состоит из нержавеющей стали и является непрерывной стальной полосой, ориентированной по существу горизонтально как в ее продольном, так и в поперечном направлениях, причем стальная полоса имеет верхнюю поверхность и нижнюю поверхность.

Изобретение относится к области металлургии. Для улучшения сцепления покрытия со стальным листом осуществляют непрерывный отжиг в печи с атмосферой инертного газа и Н2, включающий предварительный нагрев до 200-350°С в атмосфере А1 с точкой росы ниже -20°С при давлении Р1, имеющей Н2 менее 3,0% об., последующий нагрев до 600-1000°С в атмосфере А2 с точкой росы ниже -40°С при давлении Р2 выше Р1, имеющей Н2 менее 0,5% об., выдержку в атмосфере А3, имеющей Н2 менее 3,0% об., охлаждение до 400-800°С в атмосфере А4 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., выравнивание температуры краев и центра листа в атмосфере А5 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., и перемещение листа с помощью устройства с горячими натяжными роликами в ванну металлического расплава для нанесения покрытия в атмосфере А5 с точкой росы ниже -30°С, имеющей Н2 менее 2,0% об., при этом атмосферу А2 непрерывно удаляют в направлении секции печи предварительного нагрева и выдержки, а атмосферы А1, А3, А5 и А6 выпускают периодически или непрерывно через отверстия печи.

Изобретение относится к области мостостроения, в частности к стабилизации геометрических размеров сварных конструкций путем виброрезонансного нагружения, и может быть использовано для снятия остаточных напряжений в сварных главных и продольных балках проезжей части пролетных строений мостов.

Изобретение относится к области металлургии. Для снижения колебаний величины показателя потерь в железе материалов и стабильного получения хороших свойств потерь в железе способ получения листа электротехнической стали с ориентированной структурой, включает обработку по измельчению магнитной доменной структуры посредством облучения электронным пучком, выполняемую в вакуумной камере пониженного давления, поверхности листа, подвергшегося окончательному отжигу, при этом создают перед облучением электронным пучком листа электротехнической стали, смотанного в рулон, осуществляют его нагрев до 50°C или выше, а затем охлаждение листа таким образом, чтобы во время входа в вакуумную камеру пониженного давления лист имел температуру ниже 50°C.

Изобретение относится к области металлургии. Для обеспечения предела текучести > 550 МПа, предела прочности на растяжение TS > 980 МПа и повышенной пластичности и деформируемости лист получают из стали, содержащей, мас.%: 0,15 ≤ C ≤ 0,25, 1,2 ≤ Si ≤ 1,8, 2 ≤ Mn ≤ 2,4, 0,1 ≤ Cr ≤ 0,25, Al ≤ 0,5, остальное Fe и неизбежные примеси, нагревают до температуры между TA1 = Ac3 - 0,45*(Ms - QT) и TA2 = 830°C в течение по меньшей мере 30 с и охлаждают со скоростью выше 30°C/с до температуры закалки QT 180-300°C, затем лист нагревают до температуры PT перераспределения, равной 380-480°C, с выдержкой в течение времени Pt, составляющего 10-300 с, и охлаждают до комнатной температуры со скоростью охлаждения по меньшей мере 25°C/с.

Изобретение относится к области металлообработки и может быть использовано для восстановления и упрочнения деталей. Для повышения эксплуатационной стойкости изделий в индуктор устанавливают изделие, в котором образовались усталостные трещины, с помощью стяжных колец.

Изобретение относится к способу термической обработки неметаллического или металлического изделия. Способ содержит по меньшей мере один этап A) теплопереноса между указанным изделием и жидким теплоносителем A’, содержащим жидкую среду и наночастицы, и по меньшей мере один этап B) теплопереноса между изделием и жидким теплоносителем B’, содержащим жидкую среду и наночастицы.

Изобретение относится к способу термической обработки неметаллического или металлического изделия. Способ содержит по меньшей мере один этап A) теплопереноса между изделием и жидким теплоносителем A’, содержащим жидкую среду и наночастицы, имеющие размер в поперечном направлении между 26 и 50 мкм.

Изобретение относится к способу упрочнения твердого сплава и может найти применение в машиностроении при изготовлении изделий порошковой металлургии из твердых сплавов, применяемом для холодной и горячей механической обработки металлов и сплавов, например, резанием.

Изобретение относится к способу лазерного отжига неметаллических материалов и может быть использовано для обработки полупроводниковых, керамических и стеклообразных материалов.

Изобретение относится к способу формирования коррозионно-устойчивого слоя на поверхности магниевых деформируемых сплавов , в частности ультрамелкозернистых (далее УМЗ) и крупнозернистых (далее КЗ) магниевых сплавов системы Mg-Al.
Наверх