Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec



Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec
Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec
Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec
Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec
Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec
Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec
Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec
Способ измерения запаса по osnr в линии связи со спектральным уплотнением dwdm и кодированием сигнала с исправлением ошибок fec
H04B10/07951 - Передающие системы, использующие потоки корпускулярного излучения или электромагнитные волны, кроме радиоволн, например световые, инфракрасные (оптические соединения, смешивание или разделение световых сигналов G02B; световоды G02B 6/00; коммутация, модуляция и демодуляция светового излучения G02B,G02F; приборы или устройства для управления световым излучением, например для модуляции, G02F 1/00; приборы или устройства для демодуляции, переноса модуляции или изменения частоты светового излучения G02F 2/00; оптические мультиплексные системы H04J 14/00)

Владельцы патента RU 2695775:

Общество с ограниченной ответственностью "Научно-технический центр Т8" (ООО "Т8 НТЦ") (RU)

Изобретение относится к области оптоволоконной связи, в частности к оценке эффективности в оптоволоконных линиях связи, и более конкретно к процедуре измерения запаса по OSNR в линии связи со спектральным уплотнением DWDM и кодированием сигнала с исправлением ошибок FEC. Технический результат состоит в упрощении измерения запаса по OSNR в линии связи со спектральным уплотнением. Для этого в способе измерения запаса по OSNR, включающем выполнение следующих этапов: до сдачи линии связи в эксплуатацию измеряют значение OSNRBTB и зависимость OSNR от BER в схеме с тестовой короткой линией без исправления ошибок FEC, во время сдачи линии связи в эксплуатацию измеряют значение OSNROSA1 в конце линии связи, в процессе эксплуатации проводят периодические измерения параметров линии связи, по значению которых с учетом значений параметров, измеренных до сдачи линии связи в эксплуатацию, вычисляют запас osnrM по OSNR, зависимость OSNR от BER представляют в виде полинома второй степени: OSNR=а0+а1log(BER)+a2 (log(BER)2, где а0, а1 и а2 - коэффициенты полинома второй степени, аппроксимирующего экспериментально измеренную зависимость OSNR от BER в тестовой линии, при сдаче линии связи в эксплуатацию на ее участке до исправления ошибок FEC измеряют значение коэффициента ошибок BER1, во время эксплуатации линии связи на ее участке до исправления ошибок FEC периодически измеряют среднее значение коэффициента ошибок BER2 и по значению измеренных величин вычисляют запас osnrM по OSNR. 1 з.п. ф-лы, 1 табл., 2 ил.

 

Изобретение относится к области оптоволоконной связи, в частности к оценке эффективности в оптоволоконных линиях связи, и более конкретно к процедуре измерения запаса по OSNR в линии связи со спектральным уплотнением DWDM и кодированием сигнала с исправлением ошибок FEC с использованием шумовой нагрузки.

Из уровня техники известен способ измерения запаса по OSNR в линии связи с использованием шумовой нагрузки, в основе которого лежит измерение зависимости OSNR от Q-фактора с использованием шумовой нагрузки, измерение BER и приведение его значения к значению Q-фактора по определенной формуле и вычисление запаса по OSNR на основе полученных данных (Патент ЕР 0903874, опубл. 24.03.1999).

К недостаткам известного технического решения следует отнести невозможность проведения измерений без прерывания работы системы связи, обусловленную необходимостью во время измерений отключать информационный сигнал от потребителя и подавать его на оптический анализатор спектра (OSA) для определения величины OSNR линии и необходимостью во время измерений подавать дополнительную шумовую нагрузку в линию связи для определения величины требуемого OSNR линии.

Наиболее близким к заявленному - прототипом - является способ измерения запаса по OSNR в линии связи со спектральным уплотнением DWDM и кодированием сигнала с исправлением ошибок FEC, включающий выполнение следующих этапов: до сдачи линии связи в эксплуатацию измеряют значение OSNRBTB и зависимость OSNR от BER в схеме с тестовой короткой линией без исправления ошибок FEC, во время сдачи линии связи в эксплуатацию измеряют значение OSNROSA1 в конце линии связи, в процессе эксплуатации проводят периодические измерения параметров линии связи, по значению которых с учетом значений параметров, измеренных до сдачи линии связи в эксплуатацию, вычисляют запас osnrM по OSNR (OSNR System Margin Estimation by Nonlinear Noise Insensitive OSNR Monitor, Tomohiro Yamauchi, Shoichiro Oda, Liang Dou, Xiaofei Su, Takeshi Hoshida, Yasuhiko Aoki, Zhenning Tao, and Jens C. Rasmussen, ECOC 2016 42nd European Conference and Exhibition on Optical Communications ⋅ September 18-22, 2016 ⋅ Dusseldorf, p. 277-279).

В отличие от аналога, прототип позволяет уменьшить количество измерений, необходимых для вычисления запаса по OSNR, проводимых в процессе эксплуатации DWDM системы связи. В прототипе нет необходимости во время измерений подавать дополнительную шумовую нагрузку в линию связи для определения величины требуемого OSNR линии.

К недостаткам прототипа (как и аналога) следует отнести невозможность проведения измерений без прерывания работы системы связи, обусловленную необходимостью во время измерений отключать информационный сигнал от потребителя и подавать его на оптический анализатор спектра (OSA) для определения величины OSNR линии. Это не позволяет проводить постоянный мониторинг качества работы всех DWDM каналов системы связи непосредственно во время эксплуатации.

Задачей изобретения является создание простого и надежного способа измерения запаса по OSNR в линии связи со спектральным уплотнением, не требующего во время измерений отключать информационный сигнал от потребителя.

Технический результат - упрощение измерения запаса по OSNR в линии связи со спектральным уплотнением за счет возможности проведения постоянного мониторинга качества работы всех DWDM каналов системы связи непосредственно во время эксплуатации без прерывания на время проведения измерений.

Поставленная задача решается, а заявленный технический результат достигается тем, что в способе измерения запаса по OSNR в линии связи со спектральным уплотнением DWDM и кодированием сигнала с исправлением ошибок FEC, включающем выполнение следующих этапов: до сдачи линии связи в эксплуатацию измеряют значение OSNRBTB и зависимость OSNR от BER в схеме с тестовой короткой линией без исправления ошибок FEC, во время сдачи линии связи в эксплуатацию измеряют значение OSNROSA1 в конце линии связи, в процессе эксплуатации проводят периодические измерения параметров линии связи, по значению которых с учетом значений параметров, измеренных до сдачи линии связи в эксплуатацию, вычисляют запас osnrM по OSNR, зависимость OSNR от BER представляют в виде полинома второй степени: OSNR=a0+a1log(BER)+a2(log(BER))2, где а0, а1 и а2 - коэффициенты полинома второй степени, аппроксимирующего экспериментально измеренную зависимость OSNR от BER в тестовой линии, при сдаче линии связи в эксплуатацию на ее участке до исправления ошибок FEC измеряют значение коэффициента ошибок BER1, во время эксплуатации линии связи на ее участке до исправления ошибок FEC периодически измеряют среднее значение коэффициента ошибок BER2 и по значению измеренных величин вычисляют запас osnrM по OSNR по формуле: оптимально усреднение значения BER2 производить в течение не менее 10 минут.

Изобретение поясняется изображениями, где:

на Фиг. 1 - представлена схема линии связи, реализующей заявленный способ;

на Фиг. 2 - представлен график зависимости BER до FEC от OSNR в конфигурации back-to-back.

Позиции, проставленные на Фиг. 1, обозначают следующие компоненты линии связи:

1 - транспондер;

2 - мультиплексор;

3 - демультиплексор;

4 - усилитель;

5 - волокно;

6 - источник шумового излучения (источник шума);

7 - аттенюатор;

8 - OSA;

9 - сплиттер аттенюатора;

10 - сплиттер OSA;

11 - путь сигнала в конфигурации Back-To-Back;

12 - пролет линии связи;

Изобретение основано на том, что в когерентных системах связи экспериментально установлен факт существования взаимосвязи между коэффициентом ошибок (BER) до исправления ошибок и оптического отношения мощности сигнала к полной мощности шума (OSNRTOT), которую можно представить в виде полинома второй степени: OSNRTOT=a0+a1log(BER)+a2(log(BER))2, где a0, а1 и а2 - коэффициенты полинома второй степени. Входящие в приведенную формулу коэффициенты полинома второй степени уникальны для каждого транспондера и не меняются в процессе эксплуатации линии связи.

Зависимость OSNRTOT от BER является постоянной величиной в том и только в том случае, если правильно учитываются все источники шума в системе связи. В современных когерентных системах связи необходимо учитывать два источника шума: шум усиленного спонтанного излучения (шум ASE) и нелинейный интерференционный шум (NLI шум) [Н.В. Гуркин, О.Е. Наний, А.Г. Новиков, С.О. Плаксин, В.Н. Трещиков, Р.Р. Убайдуллаев. Нелинейный интерференционный шум в системах связи 100 Гбит/с с форматом модуляции DP-QPSK // Квантовая электроника, том 43, вып. 6, стр. 550-553 (2013)]. С помощью оптического анализатора спектра (OSA) можно измерить только уровень мощности шума ASE и, соответственно, величину OSNRASE. Уровень мощности NLI и, соответственно, величину OSNRNLI шума прямо измерить нельзя, но можно вычислить по измеренным одновременно величинам OSNRASE и величине BER в том случае, если известна зависимость OSNRTOT от BER [Н.В. Гуркин, О.Е. Наний, А.Г. Новиков, С.О. Плаксин, В.Н. Трещиков, Р.Р. Убайдуллаев. Нелинейный интерференционный шум в системах связи 100 Гбит/с с форматом модуляции DP-QPSK // Квантовая электроника, том 43, вып. 6, стр. 550-553 (2013)].

Зависимость OSNRTOT от BER при измерении в короткой линии (Back-to-Back) совпадает с экспериментально измеряемой зависимостью OSNRASE от BER, т.к. NLI шум в такой линии отсутствует. Поэтому, до сдачи линии в эксплуатацию в лаборатории в конфигурации Back-To-Back измеряется зависимость OSNRASE от BER. Величина шума меняется с помощью переменного аттенюатора. Для каждого положения регулятора переменного аттенюатора считываются два значения: OSNRASE и BER. Значение OSNRASE считывается с экрана OSA. Значение BER считывается с экрана компьютера через систему управления транспондером. Отметим, что функция измерения BER (BER до FEC) реализована во всех когерентных транспондерах и измеряется непрерывно в процессе эксплуатации линии связи. Получившаяся пара чисел заносится в таблицу. Таким образом формируется таблица, а также строится график, который используется для вычисления коэффициентов полинома а0, а1 и а2. Например, такие вычисления можно выполнить с использованием программы Excel, которая по точкам таблицы строит график и, при выборе соответствующей опции, строит также аппроксимирующую кривую в виде полинома второй степени и вычисляет значения коэффициентов аппроксимирующего полинома а0, а1 и а2. Одновременно измеряется критическое значение OSNR при увеличении мощности добавленного шумового излучения до значения, при котором линия связи перестает работать. Это значение критическое значение OSNR (OSNRBTB) считывается с экрана OSA и является имманентной характеристикой транспондера.

При сдаче линии в эксплуатацию мы с помощью OSA определяем критическое значение OSNR (OSNROSA1) и вводим его в систему управления транспондером. Одновременно в транспондере измеряется соответствующее OSNROSA1 значение BER1. По измеренным величинам OSNROSA1 значение BER1 и OSNRBTB удается определить величину OSNRNLI шума, которая необходима для определения запаса по OSNR в действующей линии только по одному непрерывно контролируемому параметру - BER (это значение BER обозначено BER2).

В дальнейшем, при эксплуатации линии связи каждые 10 минут транспондер определяет значение BER2 путем усреднения за 10-минутный интервал значения BER и вычисляет OSNRM по формуле:

(В описании обозначения osnr с различными индексами относятся к отношению сигнал-шум, выраженному в дБ, а обозначения OSNR с различными индексами относятся к отношению сигнал-шум, выраженному в относительных единицах.)

Пример реализации.

Заявленный способ измерения запаса по OSNR в линии связи со спектральным уплотнением DWDM и кодированием сигнала с исправлением ошибок FEC был экспериментально реализован и протестирован на экспериментальном макете линии связи.

Экспериментально исследовалась передача информационного сигнала в формате DP QPSK со скоростью передачи полезной информации 100 Гбит/с. С учетом 15% избыточности исправляющего ошибки кода FEC и 5% служебной информации суммарная битовая скорость равна 120 Гбит/с. В эксперименте использовался транспондер 1 «Волга» производства компании Т8 с оптическим модулем, выполненным в компактном исполнении (CFP).

В короткой линии была снята калибровочная кривая модуля CFP (зависимость BER до FEC от OSNR в конфигурации back-to-back), показанная на Фиг. 2.

Методика измерения в схеме back-to-back показана на Фиг. 1, вариант с короткой линией, показанной пунктиром 11. В качестве источника шума 6 использовался эрбиевый супер-люминесцентный источник излучения EAU-100Р/2, мощность шума регулируется аттенюатором 7. Для каждого положения регулятора переменного аттенюатора считываются два значения OSNR и BER. Значение OSNR считывается с экрана OSA 8, в эксперименте использовалась модель Anritsu MS9740A. Значение BER считывается с экрана компьютера через систему управления Фрактал компании Т8. Результаты измерений заносятся в таблицу Excel, по данным этой таблицы с помощью программы Excel построен график, показанный на фиг. 2, и вычислены коэффициенты аппроксимирующего полинома а0, а1 и а2 : а0=6.8, a1=-4.2, а2=-0.2

Величина критического OSNR (OSNRBTB) равна 13,3 дб.

На втором этапе эксперимента был собран макет линии связи из девяти пролетов 12 по 100 км общей длиной 900 км. Для оптимального значения входных мощностей, вводимых в пролеты, с помощью OSA измерено значение OSNROSA1, величина которого оказалась равна 24,1 dB, при этом, значение BER1 оказалось равным 1,05⋅10-5.

Измеренный в этих же условиях запас по OSNR по стандартной методике, используемой операторами связи, дал значение 11,3 dB.

Вычисление по расчетной формуле данного изобретения дает значение 11 dB.

Разница между прямым экспериментом и расчетом по патентуемой методике составил 0,3 дБ (менее 0,5 дБ).

На третьем этапе эксперимента линия связи непрерывно работала в течении 9 дней и раз в 3 дня проводились измерения значение BER2 путем усреднения за 10-минутный интервал значения BER и вычисляет OSNRM по расчетной формуле данного изобретения.

Результаты приведены в таблице.

Таким образом, предложенный способ обеспечивает измерение запаса по OSNR в непрерывном режиме в процессе эксплуатации линии связи без прерывания ее работы.

Точность определения OSNRM в предложенном способе укладывается в 0,5 дБ, что, как минимум - не хуже, чем в прототипе.

Таким образом, можно сделать вывод о том, что поставленная задача - создание простого и надежного способа измерения запаса по OSNR в линии связи со спектральным уплотнением, не требующего во время измерений отключать информационный сигнал от потребителя - решена, а заявленный технический результат - упрощение измерения запаса по OSNR в линии связи со спектральным уплотнением за счет возможности проведения постоянного мониторинга качества работы всех DWDM каналов системы связи непосредственно во время эксплуатации без прерывания на время проведения измерений.

Анализ заявленного технического решения на соответствие условиям патентоспособности показал, что указанные в формуле признаки являются существенными и взаимосвязаны между собой с образованием устойчивой совокупности, неизвестной на дату приоритета из уровня техники и достаточной для получения требуемого синергетического (сверхсуммарного) технического результата.

Свойства, регламентированные в заявленном способе отдельными признаками, общеизвестны из уровня техники и не требуют дополнительных пояснений.

Вышеизложенные сведения свидетельствуют о выполнении при использовании заявленного технического решения следующей совокупности условий:

- объект, воплощающий заявленное техническое решение, при его осуществлении относится к области оптоволоконной связи, в частности к оценке эффективности в оптоволоконных линиях связи, и более конкретно к процедуре измерения запаса по OSNR в линии связи со спектральным уплотнением DWDM и кодированием сигнала с исправлением ошибок FEC;

- для заявленного объекта в том виде, как он охарактеризован в формуле изобретения, подтверждена возможность его осуществления с помощью вышеописанных в материалах заявки известных из уровня техники на дату приоритета средств и методов;

- объект, воплощающий заявленное техническое решение, при его осуществлении способен обеспечить достижение усматриваемого заявителем технического результата.

Следовательно, заявленный объект соответствует условиям патентоспособности «новизна», «изобретательский уровень» и «промышленная применимость» по действующему законодательству.

1. Способ измерения запаса по OSNR в линии связи со спектральным уплотнением DWDM и кодированием сигнала с исправлением ошибок FEC, включающий выполнение следующих этапов: до сдачи линии связи в эксплуатацию измеряют значение OSNRBTB и зависимость OSNR от BER в схеме с тестовой короткой линией без исправления ошибок FEC, во время сдачи линии связи в эксплуатацию измеряют значение OSNROSA1 в конце линии связи, в процессе эксплуатации проводят периодические измерения параметров линии связи, по значению которых с учетом значений параметров, измеренных до сдачи линии связи в эксплуатацию, вычисляют запас osnrM по OSNR, отличающийся тем, что зависимость OSNR от BER представляют в виде полинома второй степени:

, где

а 0, а1 и а2 - коэффициенты полинома второй степени, аппроксимирующего экспериментально измеренную зависимость OSNR от BER в тестовой линии, при сдаче линии связи в эксплуатацию на ее участке до исправления ошибок FEC измеряют значение коэффициента ошибок BER1, во время эксплуатации линии связи на ее участке до исправления ошибок FEC периодически измеряют среднее значение коэффициента ошибок BER2 и по значению измеренных величин вычисляют запас osnrM по OSNR по формуле:

2. Способ измерения запаса по OSNR в линии связи с DWDM по п. 1, отличающийся тем, что усреднение значения BER2 производят в течение не менее 10 минут.



 

Похожие патенты:

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в уменьшении уровня потребления энергии.

Изобретение относится к области передачи информации. Технический результат заявленного изобретения заключается в повышении надежности при выполнении обмена информации между бортовыми системами в режиме реального времени, а также при реализации процедуры реконфигурации комплекса бортового оборудования при отказах.

Изобретение относится к оптике, а именно к демультиплексорам, разделяющим входящий сигнал по длинам волн, и может быть использовано, преимущественно, в качестве оптического элемента в системах телекоммуникаций для спектрального разделения каналов.

Изобретение относится к оптике, а именно к демультиплексорам, разделяющим входящий сигнал по длинам волн, и может быть использовано преимущественно в качестве оптического элемента в системах телекоммуникаций для спектрального разделения каналов.

Изобретение относится к области оптической связи. Техническим результатом является возможность произвольного изменения устройства, соединяемого с мультиплексором с функцией добавления-вывода.

Изобретение относится к области техники управления длиной волны. Технический результат изобретения заключается в уменьшении ограничения по непрерывности длины волны на основе сети WSON без преобразования длин волн, сокращении конфликтов длин волн при создании оптического канала и снижении вероятности блокировки соединений.

Изобретение относится к технике оптической связи. Технический результат состоит в возможности построения универсального эквалайзера, работоспособного без индивидуальной настройки с любым типом оптического усилителя (EDFA, FRA и др.), в автоматическом выполнении операций выравнивания уровней мощности, проходящей по сигнальному волокну, в рамках проектного рабочего диапазона передаваемых сигналов и в обеспечении технологической возможности интегрального выполнения конструкции устройства, с малой величиной потребляемой мощности и с возможностью дистанционного контроля равномерности уровней линейного сигнала на выходе усилителя при встраивании в алгоритм системы телемеханики.

Изобретение относится к технике связи и может использоваться в оптических системах связи. Технический результат состоит в повышении пропускной способности передачи.

Изобретение относится к области средств коммуникации. Способ раздвоения плазмон-поляритонного канала связи терагерцового диапазона включает создание основного и вторичных каналов на индивидуальных плоскогранных подложках с прямоугольными ребрами, размещение в основном канале неоднородности в виде ребра его подложки, преобразование плазмон-поляритона с помощью этого ребра в объемную волну, при этом волноведущие грани всех каналов располагают в одной плоскости, сопрягаемые грани основного канала и одного вторичного канала, направляющего плазмон-поляритон в исходном направлении, выбирают зеркально скошенными относительно друг друга.

Изобретение относится к технике связи и может использоваться в сетях беспроводной связи. Технический результат состоит в повышении надежности связи.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в уменьшении уровня потребления энергии.

Изобретение относится к области передачи информации. Технический результат заявленного изобретения заключается в повышении надежности при выполнении обмена информации между бортовыми системами в режиме реального времени, а также при реализации процедуры реконфигурации комплекса бортового оборудования при отказах.

Изобретение относится к области передачи информации. Технический результат заявленного изобретения заключается в повышении надежности при выполнении обмена информации между бортовыми системами в режиме реального времени, а также при реализации процедуры реконфигурации комплекса бортового оборудования при отказах.

Изобретение относится к технологии связи, использующей, оптическую транспортную сеть, и предназначено для гибкой передачи услуги. Вариант осуществления изобретения раскрывает, в частности, способ передачи услуги, который включает в себя этапы, на которых: отображают n клиентских сигналов со скоростью t на ms/t подобластей нагрузки m линий FlexO кадров, причем область полезной нагрузки каждой из m линий FlexO кадров разделена на s/t подобластей нагрузки и каждая линия FlexO кадра передается с использованием FlexO линии со скоростью s передачи; конфигурируют информацию типа FlexO, информацию служебной сигнализации о временном интервале и информацию отображения сигналов для каждой линии FlexO кадра и передачу m линий FlexO кадров во второе передающее устройство с использованием m FlexO линий со скоростью s передачи, причем второе передающее устройство выполнено с возможностью выполнять синтаксический разбор в соответствии с информацией типа FlexO, информацией служебной сигнализации о временном интервале и информацией отображения сигналов, клиентских сигналов, передаваемых в ms/t подобластях нагрузки.

Изобретение относится к области оптической связи. Техническим результатом является возможность произвольного изменения устройства, соединяемого с мультиплексором с функцией добавления-вывода.

Изобретение относится к области техники управления длиной волны. Технический результат изобретения заключается в уменьшении ограничения по непрерывности длины волны на основе сети WSON без преобразования длин волн, сокращении конфликтов длин волн при создании оптического канала и снижении вероятности блокировки соединений.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в повышении качества связи путем приема и передачи света с длиной волны света от оптического контрольного канала в одном волокне, что исключает асимметрию трактов приема и передачи и обеспечивает выравнивание задержек приема и передачи.

Изобретение относится к способу моделирования линий связи, в частности к способу моделирования параметров и характеристик линий связи с распределенными параметрами, в том числе оптическим линиям связи (ОЛС).

Изобретение относится к технике связи и может использоваться для конфигурирования длины волны в пассивной оптической сети с множеством длин волн. Технический результат состоит в повышении объема информации о длинах волн, предназначенных для связи.

Изобретение относится к технике связи и может использоваться в системе связи с многостанционным доступом с ортогональным частотным разделением каналов (OFDMA). Технический результат состоит в увеличении пропускной способности канала передачи Для этого используется канал сигнализации для предоставления сообщения сигнализации, подтверждения приема и регулирования мощности на терминалы доступа в пределах системы.

Изобретение относится к технике связи и может использоваться в системах оптической связи. Технический результат состоит в уменьшении уровня потребления энергии.
Наверх