Камера опорного подшипника газотурбинного двигателя

Объектом изобретения является камера (Е) опорного подшипника газотурбинной установки, содержащей неподвижную стенку (9), вращающийся вал (5), первую и вторую уплотнительные прокладки (10, 20) между стенкой и валом и полость (Cam) между неподвижной стенкой (9) и элементом (19) статора, питаемую воздухом через отверстие (19а) вблизи упомянутого вала (5). Камера отличается тем, что вдоль поверхности стенки (9) снаружи камеры выполнено средство (30) направления воздуха таким образом, чтобы по меньшей мере часть воздуха, выходящая из направляющего средства, проходила между первой уплотнительной прокладкой (10) и валом, причем это направляющее средство питается воздухом через воздухозаборник в полости (Cam), отстоящий в радиальном направлении от вала, при этом воздух, выходящий из воздухозаборника, находится под более высоким давлением, чем на уровне упомянутого вала. Решается проблема равновесия давления снаружи двух прокладок камеры за счет повышения давления на входе прокладки, где давление имеет наименьший уровень. 2 н. и 7 з.п. ф-лы, 4 ил.

 

ОБЛАСТЬ ТЕХНИКИ

Настоящее изобретение относится к области газотурбинных установок, в частности, к области газотурбинных двигателей, предназначенных для обеспечения тяги для летательных аппаратов. Изобретение касается обеспечения равновесия давлений на границах устройств уплотнения между вращающимися элементами и неподвижными элементами газотурбинной установки, в частности, в зоне опорных подшипников, поддерживающих валы роторов, и обеспечения герметичности камер, в которых установлены эти подшипники.

ПРЕДШЕСТВУЮЩИЙ УРОВЕНЬ ТЕХНИКИ

Как правило, газотурбинная установка летательного аппарата содержит от входа к выходу в направлении прохождения газов вентилятор, одну или несколько компрессорных ступеней, например, компрессор низкого давления НД и компрессор высокого давления ВД, камеру сгорания, одну или несколько турбинных ступеней, например, турбину высокого давления и турбину низкого давления, и сопло выпуска газов. Каждому компрессору может соответствовать турбина, и они соединены валом, образуя, таким образом, корпус высокого давления ВД и корпус низкого давления НД.

На входе и на выходе валы поддерживаются опорными подшипниками, которые установлены в камерах, изолирующих их от остальной части двигателя. Камеры содержат подшипники качения, установленные между вращающимся органом двигателя и поддерживающей его неподвижной частью или между двумя вращающимися частями, которые вращаются с разными скоростями, такими как цапфа, неподвижно соединенная с валом ВД, и вал НД. Опорные подшипники смазываются и охлаждаются маслом. Масло, отбрасываемое вращающимися деталями, образует туман из взвеси капель. Эти камеры образованы и ограничены стенками неподвижной конструкции двигателя, а также вращающимися элементами. В зонах, где соединяются неподвижные и подвижные части, предусмотрены средства уплотнения. Эти средства должны обеспечивать прохождение между ними воздушного потока для наддува камеры и удержания внутри нее максимального количества масла. Поэтому уплотнение между неподвижными элементами и вращающимися элементами масляной камеры является исключительно сложной проблемой.

Часто уплотнение обеспечивают при помощи лабиринтной прокладки, которая является наиболее простым, наиболее надежным и наиболее распространенным решением уплотнения в газотурбинных установках. Такая прокладка содержит, с одной стороны, гребешки или тонкие ребра, неподвижно соединенные с вращающейся деталью, и, с другой стороны, истираемый материал, расположенный напротив гребешков и неподвижно соединенный с неподвижной деталью. Поскольку близко от этого места находится подшипник качения, между гребешками и истираемым элементом необходимо оставлять зазор, чтобы гребешки не царапали истираемый элемент и не создавали стружек из его материала: подшипники качения являются чувствительными к металлическим частицам, которые могут их повредить. Каждый гребешок создает во взаимодействии с находящимся напротив него истираемым элементом потерю напора, и именно сумма этих потерь напора обеспечивает необходимое уплотнение. Можно также использовать другие прокладки, такие как щеточные прокладки, как описано в патентной заявке FR 1261694, поданной на имя заявителя, где лабиринтная прокладка объединена с щеточной прокладкой для контроля расходов утечки через уплотнительную прокладку при любом режиме двигателя. В патентной заявке FR 2 929 325, поданной на имя заявителя, раскрыта камера опорного подшипника с контролем расхода утечки при помощи давления внутри камеры тоже в зависимости от режима. В этой заявке упомянуты прокладки радиальной сегментированной прокладки, обозначаемые также сокращением JRS. Применение прокладки этого типа для газотурбинной установки описано в патенте ЕР 387.122, зарегистрированном на имя заявителя.

Как правило, камера опорного подшипника содержит две уплотнительные прокладки вдоль вала, одну на входе опорного подшипника, содержащегося в камере, другую на их выходе. Однако некоторые камеры опорного подшипника могут содержать одну или несколько дополнительных прокладок, и сама камера может содержать несколько опорных подшипников. Как было указано выше, через эти прокладки проходят потоки газа снаружи прокладок внутрь камеры, которые во время работы двигателя не дают содержащемуся в камере маслу вытекать и загрязнять другие органы двигателя. Этот газ является воздухом, поступающим из источника воздуха под давлением, в частности, из компрессоров.

Камера может сообщаться с наружным воздухом и поддерживаться под давлением, близким к атмосферному давлению. Опорные подшипники внутри камер омываются масляным туманом, который непрерывно извлекается из камеры и отделяется в маслоотделителе.

Камера может также не сообщаться с наружным воздухом и не иметь маслоотделителя. Маслосборный насос, соединенный со сборным выходом, расположенным на 6 часов в нижней точке двигателя, собирает масло и воздух из камеры и способствует, таким образом, засасыванию воздуха через прокладки масляной камеры. Предпочтительно насос имеет пропускную способность, превышающую расход масла, поступающего в камеру и обеспечивающего смазку опорного подшипника. В этом случае важно иметь воздушный поток, проходящий через обе уплотнительные прокладки, входную и выходную, чтобы задерживать масло на уровне обеих прокладок. Чтобы получить воздушные потоки, проходящие через обе прокладки масляной камеры, необходимо обеспечить равновесие давления на входе обеих прокладок. Благодаря этому равновесию, не создается преимущественный путь, который может проходить скорее через одну прокладку, чем через другую, что отрицательно сказалось бы на эффективности уплотнения последней.

Настоящее изобретение призвано решить эту проблему равновесия давления снаружи двух прокладок камеры за счет повышения давления на входе прокладки, где давление имеет наименьший уровень.

Согласно известному решению, воздух, предназначенный для наддува уплотнительных прокладок и поступающий из компрессоров, проникает в полость, в которой находится камера опорного подшипника, через отверстие, расположенное вблизи вала, затем направляется вдоль наружной поверхности камеры опорного подшипника в радиальном, затем в осевом направлении через соответствующие проходы до выходной полости для питания выходной прокладки. Анализ уровней давления этого воздушного потока наддува показывает, что имеется градиент давления между входным воздушным отверстием и зоной, находящейся на более высоком радиальном уровне. Этот градиент давления является результатом вихревой рекомпрессии в этой полости, находящейся на входе входной прокладки камеры подшипника. Выражение «вихревая рекомпрессия» обозначает явление, которое связывает радиальное отклонение с разностью давления в присутствии вращающегося потока. В данном случае поток является вращающимся, так как он приводится во вращение валом газотурбинной установки. Поскольку воздушный поток наддува, поступающий из компрессора, проходит в камеру через отверстие, расположенное радиально на уровне вала, то вращение вала приводит во вращение этот воздушный поток, который закручивается в радиальном направлении до кольцевого выпускного канала, который находится на более высоком радиусе, чем отверстие входа в камеру. Это вихревое движение создает радиальный градиент давления на вентиляционном воздушном потоке.

СУЩНОСТЬ ИЗОБРЕТЕНИЯ

В настоящем изобретении предложено использовать этот градиент давления с целью отбора воздуха при давлении, более высоком, чем на уровне уплотнительной прокладки, в частности, чтобы обеспечить достаточный уровень давления на входе первой прокладки и равновесие между давлениями снаружи двух прокладок камеры. Таким образом, можно обеспечить достаточный расход воздуха, проходящего через обе уплотнительные прокладки, чтобы помешать любой утечке масла.

Согласно изобретению, камера опорного подшипника газотурбинной установки, содержащей неподвижную стенку, вращающийся вал, первую и вторую уплотнительные прокладки между стенкой и валом и полость между неподвижной стенкой и элементом статора, отличается тем, что вдоль участка поверхности неподвижной стенки снаружи камеры выполнено средство направления воздуха таким образом, чтобы по меньшей мере часть воздуха, выходящая из направляющего средства, проходила через первую уплотнительную прокладку, причем это направляющее средство образует канал, в который подается воздух через отверстие впуска воздуха в полость, отстоящее в радиальном направлении от вала, при этом воздух, выходящий из отверстие впуска воздуха в полость, находится под более высоким давлением, чем на уровне вала.

Таким образом, получают средство контроля давления на уровне первой уплотнительной прокладки, чтобы уравновешивать соответствующие давления на уровне двух уплотнительных прокладок.

Согласно предпочтительному варианту выполнения, поскольку стенка камеры опорного подшипника содержит радиально направленный участок, направляющее средство содержит направляющую пластину, например, в виде простого металлического листа, расположенного в радиальном направлении параллельно указанному участку стенки камеры. В частности, поскольку первая уплотнительная прокладка опирается на фланец, закрепленный на фланце камеры, и поскольку участок стенки камеры образован указанной опорой, эту направляющую пластину устанавливают на стенке камеры и крепят, например, болтами вместе с опорой уплотнительной прокладки на фланце.

Предпочтительно направляющая пластина в виде листа образует с валом небольшой зазор. Действительно, следует избегать, чтобы слишком большая часть воздуха, направляемого между пластиной и стенкой камеры, возвращалась в направлении входной полости. Воздух предназначен для прохождения через прокладку на уровне вала.

Использование давления вдоль стенки камеры опорного подшипника можно еще улучшить при помощи направляющего средства, содержащего устройство, выполненное с возможностью направления воздушного потока в радиальном направлении, при этом на выходе этого устройства тангенциальная составляющая скорости меньше радиальной составляющей. За счет ослабления вращения воздуха уменьшают потерю напора вдоль направляющего средства.

Предпочтительно тангенциальную составляющую скорости этого воздушного потока уменьшают за счет установки кольца с выполненными в нем радиальными отверстиями, в частности, вытянутой формы, или содержащего ребра, направляющие поток в радиальном направлении, или кольца с сотовой структурой.

Изобретение находит свое применение для камеры, первая уплотнительная прокладка которой является сегментированной радиальной прокладкой. Действительно, прокладка этого типа является очень эффективной. Вторая уплотнительная прокладка может быть лабиринтной прокладкой.

Заявленное речение можно применять, в частности, для случая, когда радиально отстоящий воздухозаборник соответствует вихревой зоне сжатия.

Наконец, объектом изобретения является газотурбинная установка, содержащая заявленную камеру опорного подшипника с кольцевой полостью на входе камеры опорного подшипника. Эта полость питается воздухом через отверстие питания вблизи вала и содержит выпускное воздушное отверстие в виде кольцевого канала, радиально отстоящее от вала. Таким образом, существует радиальный промежуток между отверстием подачи воздуха во входную полость и ее выпускным воздушным отверстием. Отстоящий в радиальном направлении воздухозаборник средства направления воздуха наддува первой прокладки расположен вблизи упомянутого выпускного воздушного отверстия.

Газотурбинная установка содержит также кольцевую полость на выходе камеры опорного подшипника, питаемую воздухом наддува второй уплотнительной прокладки из упомянутого выпускного отверстия входной кольцевой полости. Часть воздуха наддува прокладки проходит в упомянутую камеру опорного подшипника через вторую прокладку.

КРАТКОЕ ОПИСАНИЕ ФИГУР

Другие отличительные признаки и преимущества будут более очевидны из нижеследующего описания не ограничительного варианта осуществления изобретения со ссылками на прилагаемые чертежи, на которых:

Фиг. 1 изображает схематичный вид в осевом разрезе известного двухконтурного турбореактивного двигателя.

Фиг. 2 - схематичный вид в осевом разрезе известной камеры опорного подшипника.

Фиг. 3 - камеру опорного подшипника, показанная на фиг. 2, на которой установлено заявленное устройство.

Фиг. 4 - пример монтажа заявленного устройства.

ПОДРОБНОЕ ОПИСАНИЕ ВАРИАНТА ВЫПОЛНЕНИЯ ИЗОБРЕТЕНИЯ

На фиг. 1 показан известный турбореактивный двигатель 1, который классически содержит вентилятор S, компрессор 1а низкого давления НД, компрессор 1b высокого давления ВД, камеру 1с сгорания, турбину 1d высокого давления ВД и турбину 1е низкого давления НД. Компрессор 1b высокого давления и турбина 1d высокого давления соединены валом 4 высокого давления и образуют вместе с ним корпус высокого давления ВД. Компрессор 1а низкого давления и турбина 1е низкого давления соединены валом 5 низкого давления и образуют вместе с ним корпус низкого давления НД. Эти корпуса установлены на неподвижных конструктивных деталях, называемых промежуточным картером 2 для крепления их подшипников качения, находящихся на входе, и выпускным картером 3 для крепления их подшипников качения, находящихся на выходе.

Для обеспечения своей смазки эти подшипники качения заключены в камеры, которые являются почти герметичными и образованы расположенными друг за другом неподвижными стенками, соединенными с промежуточным картером 2, соответственно с выпускным картером 3, и подвижными элементами, соединенными с валами высокого и низкого давления соответственно. Таким образом, газотурбинная установка содержит входную камеру Е1, связанную с промежуточным картером 2, и выходную камеру Е2, связанную с выпускным картером 3. Как было указано выше, эти камеры находятся в атмосфере, содержащей масло для смазки различных органов, и через них проходит воздушный поток с контролируемым расходом для их наддува.

На фиг. 2 показан опорный подшипник в своей камере в соответствии с известным решением. В данном случае речь идет о заднем опорном подшипнике, связанном с выпускным картером вместе со своей камерой Е2.

Выходной конец вала НД 5 поддерживается подшипником 7, неподвижное кольцо 7а которого установлено на опоре 9 подшипника, неподвижно соединенной с выпускным картером двигателя. Подшипник омывается масляным туманом, который производят не показанные средства. Опора 9 подшипника выполнена таким образом, что образует вместе с валом камеру Е2, охватывающую опорный подшипник 7. Опора подшипника образует неподвижную стенку 9. На входе подшипника первая уплотнительная прокладка 10 обеспечивает уплотнение между неподвижной стенкой 9 и валом 5. На выходе подшипника 7 вторая уплотнительная прокладка 20 обеспечивает уплотнение между опорой и валом 5. В данном случае первая прокладка является сегментированной радиальной прокладкой, а вторая уплотнительная прокладка является лабиринтной прокладкой. Опора 9 подшипника содержит участок 16 стенки на входе, который расположен перпендикулярно к валу 5.

Вторая лабиринтная прокладка 20 содержит гребешки, взаимодействующие с элементом из истираемого материала. Винтовой элемент, как и в случае первой прокладки, перемещает в камеру масло, которое стремится скапливаться возле прокладки.

Стрелками показана циркуляция воздуха наддува прокладок. Воздух F1, поступающий из компрессоров, проникает через отверстие 19а вблизи вала 5 в полость Cam, образованную между входной стенкой камеры Е2 и элементом 19 статора, таким как лист. Этот воздух закручивается в вихревом движении внутри этой полости по причине вращения вала 5. Он подвергается вихревому сжатию или вихревой рекомпрессии и частично выходит в F2 через выпускное отверстие 19b, удаленное от вала и образованное кольцевым каналом между камерой Е2 и листом 19. Давление определяют таким образом, чтобы часть F10 воздуха в этой полости Cam проходила через первую прокладку 10 в камеру опорного подшипника, препятствуя любой утечке масла через эту прокладку. Воздух F2 следует по пути F3, затем F4 до выходной полости Cav со стороны второй уплотнительной прокладки 20 опорного подшипника. Часть F20 воздуха проходит через прокладку 20. Давление воздуха повышается от F1 до F2, как было указано выше, затем понижается в F3 до F4 по причине потерь напора в контуре между двумя полостями Cam и Cav. Отмечается, что в этой конфигурации давление в А непосредственно на входе первой прокладки 10 остается ниже давления в В непосредственно на входе второй прокладки, несмотря на потери напора в F3 и F4.

Давление в В находится на достаточном уровне по сравнению с давлением внутри камеры, чтобы не позволять маслу вытекать через лабиринтную прокладку 20.

С другой стороны, дефицит давления в А может привести к утечке масла через прокладку 10.

Учитывая, что существует градиент давления между входом в F1 и выходом входной полости Cam в F2, согласно изобретению, между зоной давления F2 и входом А прокладки 10 добавлено средство направления воздуха.

На фиг. 3 представлено заявленное решение. На участке 16 стенки опоры 9 подшипника через промежуточную распорку 32 установлен лист 30. Этот лист 30 образует канал или проход, образующий упомянутое средство направления воздуха, которое расположено радиально между валом 5 и выходным кольцевым каналом 19b полости Cam. Между валом 5 и листом 30 оставлен небольшой зазор. При этой конструкции воздух в этом проходе находится под давлением, присутствующим в F2, если не считать потерю напора, и в проходе образуется центростремительный воздушный поток, который проходит через прокладку 10 и зазор с учетом более низкого уровня давления в F1 и в камере опорного подшипника. За счет выполнения зазора минимального размера получают воздушный поток, проходящий через прокладку 10.

Кроме повышения давления на входе первой прокладки, лист позволяет также избежать разностей давления, которые могли бы появиться в полости Cam на всех радиальных высотах. Эти нежелательные перепады давления могут появляться по причине формы картера и силы завихрения. Давление, получаемое на входе прокладки, лишь в незначительной степени подвергается действию перепадов в окружающей его среде.

Использование давления можно улучшить за счет спрямления центростремительного воздушного потока. Это позволяет получить спрямляющие средства, которые устраняют или по меньшей мере уменьшают тангенциальную составляющую скорости центростремительного воздушного потока. Эти средства спрямления потока представляют собой, например, отверстия соответствующего направления, например, вытянутой формы, выполненные в распорке 32. Вместо отверстий можно также предусмотреть радиальные ребра или любое другое средство, например, кольцо в виде сотовой структуры.

На фиг. 4 представлен практический пример монтажа с сегментированной радиальной прокладкой. Согласно варианту выполнения, описанному в патенте ЕР 387122, прокладка 10 содержит сегментированное кольцо 12, например, из графита, сегменты которого скреплены при помощи упругого кольца и установлены в пазу пластины 16, на которую опирается кольцевая прокладка. Сегменты опираются на кольцевую дорожку, выполненную на поверхности вала. Опорная пластина 16 прокладки образует входную часть камеры опорного подшипника. Опорная пластина 16 прокладки расположена в плоскости, поперечной относительно вала, и закреплена болтами на входном фланце 18 опоры 9 подшипника. Как известно, на выходе прокладки расположен винтовой элемент 14, функцией которого является сбор масла, скапливающегося на прокладке, и его направление в камеру.

Благодаря заявленному решению, используют давление, создаваемое вихревым движением воздуха, чтобы регулировать давление на входе первой прокладки. Это давление регулируют таким образом, чтобы уменьшить и даже практически устранить разность давления с входом второй прокладки на выходе и уравновесить таким образом давления на границах камеры опорного подшипника.

Это решение является надежным, так как равновесие давлений не зависит от силы завихрения, а только от потерь напора на пути между двумя полостями, входной и выходной. Таким образом, можно регулировать потери напора направляющего устройства и практически идеально уравновешивать тем самым давления.

Изобретение было описано для случая, когда речь идет о регулировании уровня давления непосредственно на входе входной уплотнительной прокладки камеры опорного подшипника вала низкого давления двухконтурного двигателя. Его можно применять для всех случаев, когда необходимо регулировать давление на уровне уплотнительной прокладки камеры опорного подшипника и когда существует соседний источник давления, в частности, по причине вихревой рекомпрессии.

1. Камера опорного подшипника газотурбинной установки, содержащей неподвижную стенку (9), вращающийся вал (5), первую и вторую уплотнительные прокладки (10;20) между стенкой и валом и полость (Cam) между неподвижной стенкой (9) и элементом (19) статора, отличающаяся тем, что вдоль поверхности стенки (9) снаружи камеры выполнено средство направления воздуха таким образом, чтобы по меньшей мере часть воздуха, выходящая из направляющего средства, проходила через первую уплотнительную прокладку (10), причем это средство направления воздуха образует канал, в который подается воздух через отверстие впуска воздуха в полость (Cam), причем указанное отверстие впуска воздуха отстоит в радиальном направлении от вала, для того, чтобы воздух, подаваемый в указанный канал, находился под более высоким давлением, чем воздух, проходящий через отверстие (19а).

2. Камера по п.1, в которой средство направления воздуха средство содержит лист (30), расположенный в радиальном направлении вдоль и на расстоянии от части стенки (16) камеры.

3. Камера по одному из пп.1 или 2, в которой лист (30) образует зазор с валом (5), при котором часть воздуха, направляемого в указанный канал, проходит через первую уплотнительную прокладку (10).

4. Камера по п.2 или 3, в которой предусмотрена распорка (32), расположенная между листом (30) и частью стенки (16), причем указанная распорка выполнена в форме кольца с радиальными отверстиями или с сотовой структурой, или с ребрами.

5. Камера по п.1, в которой первая уплотнительная прокладка (10) является сегментированной радиальной прокладкой.

6. Камера по одному из пп.1 или 2, содержащая вторую уплотнительную прокладку (20), в частности, лабиринтную прокладку.

7. Камера по одному из пп.1 или 2, в которой отверстие впуска воздуха расположено в вихревой зоне сжатия в полости (Cam).

8. Газотурбинная установка, содержащая камеру опорного подшипника по одному из пп.1-7 с кольцевой полостью (Cam) на входе камеры (Е), питаемой воздухом через отверстие (19а) вблизи вала (5), и с выпускным отверстием (19b), радиально отстоящим от вала, при этом упомянутое отверстие впуска воздуха расположено вблизи упомянутого выпускного отверстия.

9. Газотурбинная установка по п.8, содержащая выходную кольцевую полость (Cav) на выходе камеры (Е), в которую подается воздух из входной кольцевой полости (Cam), при этом часть воздуха проходит в упомянутую камеру (Е).



 

Похожие патенты:

Объектом изобретения является элемент газотурбинного двигателя, содержащий статор (2), ротор (1) и первое уплотнительное средство (9) между ротором (1) и статором (2), выполненное таким образом, чтобы быть активным, когда ротор находится в рабочем положении вокруг своей оси вращения (LL).

Изобретение относится к экранирующим элементам реактивного двигателя. Экранирующий элемент (30) расположен поверх зазоров между участками полки (20) соседних лопаток (10) ротора турбины и выполнен из композита с керамической матрицей с возможностью экранирования зазора между участками полки (20) за счет вхождения в контакт вдоль внутренних поверхностей корпусов участков полки.

Газотурбинная установка содержит ступень сжатия воздуха, имеющую по меньшей мере одно рабочее колесо компрессора, входной воздушный трубопровод, связанный с упомянутой ступенью сжатия, первое уплотнительное устройство, расположенное между передним участком рабочего колеса компрессора и входным воздушным трубопроводом и содержащее по меньшей мере одну уплотнительную прокладку, канал транспортировки воздуха, сжимаемого рабочим колесом.

Изобретение относится к области турбинных двигателей. Способ регулирования по меньшей мере одного двигателя, который содержит компрессор, камеру сгорания, первую и вторую турбины ниже по потоку от камеры сгорания, первый вращающийся вал, удерживающийся с возможностью вращения, по меньшей мере, с упомянутым компрессором и упомянутой первой турбиной, второй вращающийся вал, удерживающийся с возможностью вращения со второй турбиной, причем второй вращающийся вал, тем не менее, может свободно вращаться относительно первого вращающегося вала, включает в себя регулятор для управления подачей топлива к камере сгорания.

Изобретение относится к технологиям сборки авиационных двигателей и энергетических установок, методам контроля и обеспечения сборочных параметров и особенностей технологического процесса сборки и конструкции оснастки, в частности к методам контроля параметров при сборке опоры ротора турбины.

Изобретение относится к устройству защиты от утечек масла в сторону роторов турбины (2) газотурбинного двигателя, содержащему входную полость (18), выполненную с возможностью циркуляции в ней смеси воздух/масло, при этом указанная входная полость ограничена на выходе цапфой (8) ротора турбины и снаружи уплотнительным фланцем (14) цапфы, проходящим в осевом направлении ко входу, выходную полость (20), открывающуюся в сторону дисков (12) турбины и сообщающуюся с входной полостью через множество вентиляционных отверстий (22), выполненных в цапфе, и входной кольцевой отражатель (24), закрепленный на уплотнительном фланце цапфы и проходящий радиально внутрь в направлении вентиляционных отверстий.

Цапфа для турбины высокого давления выполнена с возможностью установки между валом турбины низкого давления и внутренней поверхностью опоры уплотнения турбины низкого давления и содержит удлинение для сбрасывания капель и углубление.

Узел уплотнения между полостью диска и каналом горячего газа, проходящий через секцию турбины газотурбинного двигателя, содержит вращающийся узел рабочих лопаток и неподвижный узел направляющих лопаток.

Уплотнение для газотурбинного двигателя содержит основную часть, расположенную у основания турбинной лопатки, и крыловидную часть, проходящую в осевом направлении от указанной основной части уплотнения.

Изобретение относится к узлу уплотнения полки лопатки газотурбинного двигателя, содержащего диск турбины и несколько лопаток турбины. Узел уплотнения полки лопатки содержит уплотнение полки лопатки и метку валидации.

Турбокомпаундный блок включает вал турбины, рабочее колесо турбины, установленное на одном конце вала турбины, зубчатое колесо, установленное на противоположном конце вала турбины, а также корпус и узел подшипника качения.

Сектор статора турбины содержит множество лопаток из композитного материала, содержащего волоконное армирование, уплотненное матрицей, первую и вторую платформы. Каждая лопатка имеет аэродинамический профиль, а платформы имеют вид дуг окружностей и изготовлены из композитного материала, содержащего волоконное армирование, уплотненное матрицей.

Кольцевая крышка смазочной камеры подшипника турбомашины содержит кольцевую стенку, которая в целом является круглой, образует раструб и на одном конце, предназначенном для установки в него передаточного вала, содержит просвет, а на другом конце содержит установочную поверхность крышки.

Изобретение относится к узлу (1), содержащему выпускной картер (20), имеющий форму тела вращения вокруг оси (Х-Х), содержащий фланец (23) крепления на опоре (42), уплотнительную пластину (30) в виде тела вращения вокруг оси (Х-Х), при этом пластина установлена на фланце (23) крепления выпускного картера и имеет радиальное сечение, содержащее радиально внутреннюю концевую часть (32), радиально наружную концевую часть (34) и изгиб (31), расположенный между двумя концевыми частями, при этом указанные части образуют между собой угол, составляющий от 80 до 100 градусов, причем радиально наружная концевая часть имеет длину (L34) в осевом направлении, составляющую от 15 до 35% высоты (Н) пластины, измеренной в радиальном направлении вокруг оси вращения, при этом радиально наружная концевая часть проходит по существу параллельно указанной оси, и указанный изгиб открыт в сторону выхода относительно воздушного потока.

Изобретение относится к кольцевому внешнему корпусу компрессора низкого давления осевой турбомашины. Корпус содержит кольцевую стенку из композитного материала с органической основой.

Воздухозаборная камера для газотурбинного двигателя содержит полый корпус и по меньшей мере одну отсоединяемую часть. Полый корпус имеет воздухозаборное отверстие и воздуховыпускное отверстие, расположенное и выполненное с обеспечением возможности присоединения к указанному газотурбинному двигателю.

Соединение для авиационного газотурбинного двигателя содержит опору подшипника качения и расположенный в ее внутреннем пространстве подшипник, вращающийся узел, содержащий первое зубчатое колесо и приводимый во вращение газогенератором двигателя, коробку отбора механической мощности, вал отбора механической мощности и средства монтажа коробки отбора механической мощности на опоре подшипника.

Двухконтурный газотурбинный двигатель, содержащий вентилятор, установленный с возможностью вращения на валу (1) вентилятора, и неподвижный конструктивный элемент (2), при этом упомянутый вал (1) вентилятора и упомянутый конструктивный элемент (2) соединены между собой на уровне входного опорного подшипника (5) и выходного опорного подшипника (7) соответственно через опору (4) входного подшипника и опору (6) выходного подшипника, и устройство (3) разъединения, окружающее упомянутый вал (1) вентилятора и содержащее набор крепежных винтов (10), соединяющих опору (6) выходного подшипника с упомянутым конструктивным элементом (2) неподвижным соединением, и набор предохранительных винтов (20), соединяющих опору (4) входного подшипника с упомянутой опорой (6) выходного подшипника разрывным соединением.

Изобретение относится к области газотурбинных двигателей и, в частности, к кольцевому элементу (13) корпуса газотурбинного двигателя. Внутренняя сторона (14) ограничивает проточный тракт для рабочей текучей среды газотурбинного двигателя.

Корпус газотурбинного двигателя содержит кольцо, образованное соединением множества секторов. Секторы изготовлены за одно целое с расположенными на их поверхности элементами крепления при помощи литья.

Коробка приводов агрегатов для приведения в действие агрегатов авиационного газотурбинного двигателя содержит корпус и множество зубчатых колес внутри корпуса. Корпус содержит средства для крепления агрегатов на стенке корпуса и для их приведения в действие зубчатыми колесами через отверстия в стенке корпуса.
Наверх