Однокомпонентный сенсор геомагнитных полей

Изобретение относится к устройствам для проведения векторных измерений слабых геомагнитных полей. Однокомпонентный сенсор геомагнитных полей содержит три параллельно расположенные стальные пластины, в зазорах между которыми установлены постоянные магниты, одноименные полюсы которых присоединены к обеим сторонам внутренней пластины, каждый генератор установлен на диэлектрической подложке с металлизированным основанием, генераторы размещены в зазорах системы намагничивания между магнитами и присоединены металлизированным основанием к противоположным сторонам внутренней стальной пластины, при этом пленки ЖИГ резонаторов выполнены в виде квадрата или диска, входные и выходные преобразователи СВЧ сигналов расположены на противоположных сторонах резонаторов и ориентированы вдоль ортогональных осей резонаторов. Технический результат – повышение термодинамической устойчивости при быстрых изменениях температуры окружающей среды. 1 з.п. ф-лы, 5 ил.

 

Изобретение относится к устройствам измерения векторных характеристик слабых геомагнитных полей и может применяться в системах высокоточной геомагнитной навигации для мониторинга геомагнитной обстановки, для проведения научно-исследовательских, картографических и геолого-разведывательных работ.

Известны сверхвысокочувствительные квантовые СКВИД-магнетометры с чувствительностью до 10-12 Тл и менее (см., например, патент РФ №2384856, МПК G01R 33/02, опубл. 20.03.2010). Устройство включает в себя три магнитометра на основе СКВИДов постоянного тока из высокотемпературных сверхпроводников, выходы которых подключены к блоку обработки сигналов.

Недостатком СКВИД-магнетометров является громоздкость и сложность конструкции, но главный недостаток в том, что верхняя граница их динамического диапазона существенно ниже напряженности геомагнитного поля.

Известны высокочувствительные феррозондовые магнетометры с чувствительностью до 10-10 Тл (см. например, патенты РФ № 2386976, МПК G01R 33/02, опубл. 20.04.2010; № 2441250, МПК G01R 33/02, опубл. 27.01.2012; № 2549545, МПК G01R 33/02, опубл. 27.04.2015).

Недостатками феррозондовых магнетометров являются большие габариты, температурная нестабильность, ограниченный динамический диапазон, значительная инерционность, сложность сопряжения с электроникой, низкая механическая прочность, значительная трудоемкость и высокая стоимость.

Известны высокочувствительные магнетометры с частотным выходом, выполненные на основе автогенератора с частотно-задающим элементом в виде сферического резонатора из монокристаллического железоиттриевого граната (ЖИГ) или пленочного ЖИГ резонатора на немагнитной подложке гадолиний-галлиевого граната (ГГГ) (Гурзо В.В. и др. Векторный магнитометр малых магнитных полей // Гетеромагнитная микроэлектроника. Саратов: Изд-во Сарат. ун-та. 2004. Вып.1. С.50-52.; патент РФ № 2529448, МПК G01R 33/24, опубл. 27.09.2014, патент РФ № 2529440, МПК G01R 33/24, опубл. 27.09.2014; патент РФ №2100819, МПК G01R 33/02, опубл. 27.12.1997).

Недостатком указанных устройств является сложность конструкции, значительные габариты, температурная зависимость результатов измерений.

Наиболее близким к заявляемому решению является однокомпонентный сенсор магнитных полей на основе магнитостатических волн (МСВ) (Европейский патент №0093650, МПК G01R 33/02, опубл. 09.11.1983).

Однокомпонентный сенсор имеет в своем составе два генератора, содержащих в цепи обратной связи частотно-задающие элементы в виде идентичных пленочных ЖИГ резонаторов, выполненных в виде линии задержки на МСВ с двумя отражательными решетками, входные и выходные преобразователи СВЧ в виде параллельных закороченных на концах микрополосковых линий передачи, расположенных между отражательными решетками. Оба резонатора вместе с входными и выходными преобразователями помещены в магнитные поля, представляющие собой векторные суммы постоянных намагничивающих полей ориентированных в противоположных направлениях и локализованных вблизи полюсов U-образного магнита и внешнего измеряемого магнитного поля. Выходы генераторов соединены с первым и вторым входами смесителя сигналов. На выходе смесителя выделяется разностная частота сигналов автогенераторов, которая является функцией координатной составляющей измеряемого поля параллельной направлениям постоянного намагничивания.

Недостатками прототипа являются большие габариты и термодинамическая неустойчивость результатов измерений при быстрых изменениях температуры окружающей среды.

Проблема, на решение которой направлено изобретение, заключается в создании миниатюрного сенсора геомагнитных полей и измерителя на его основе с улучшенными параметрами.

Техническим результатом изобретения является повышение термодинамической устойчивости при быстрых изменениях температуры окружающей среды.

Указанный технический результат достигается тем, что в однокомпонентном сенсоре геомагнитных полей, содержащем два идентичных СВЧ генератора, каждый из которых включает частотно-задающий элемент в виде пленочного ЖИГ резонатора, входной и выходной преобразователи СВЧ сигнала; систему намагничивания пленочных резонаторов в противоположных направлениях по нормали к поверхности пленки ЖИГ; смеситель сигналов, входы которого соединены с выходами генераторов, согласно решению система намагничивания пленочных ЖИГ резонаторов представляет собой три параллельно расположенные стальные пластины, в зазорах между которыми установлены постоянные магниты; одноименные полюсы которых присоединены к обеим сторонам внутренней пластины; каждый генератор установлен на диэлектрической подложке с металлизированным основанием, генераторы размещены в зазорах системы намагничивания между магнитами и присоединены металлизированным основанием к противоположным сторонам внутренней стальной пластины, при этом пленки ЖИГ резонаторов выполнены в виде квадрата или диска; входные и выходные преобразователи СВЧ сигналов расположены на противоположных сторонах резонаторов и ориентированы вдоль ортогональных осей резонаторов.

Изобретение поясняется чертежами, где на фиг.1 показана блок-схема однокомпонентного сенсора геомагнитных полей; на фиг.2 показана конструкция первичного модуля однокомпонентного сенсора геомагнитных полей; на фиг.3 показан вариант включения пленочного ЖИГ резонатора в цепь обратной связи генератора; на фиг. 4 показана блок-схема векторного измерителя геомагнитных полей, на фиг. 5 приведены результаты моделирования намагничивающих полей.

Позициями на чертежах обозначены:

1 – однокомпонентный сенсор геомагнитных полей;

2 – первичный модуль однокомпонентного сенсора геомагнитных полей;

3 – смеситель сигналов;

4 – фильтр низких частот;

5 – цифровой частотомер;

6 – микропроцессор;

7 – индикатор;

8 – стальные пластины;

9 – постоянные магниты;

10 – платы автогенераторов;

11 –диэлектрическая подложка платы автогенератора;

12 – пленочный ЖИГ резонатор;

13 –немагнитная подложка ГГГ;

14 – входной микрополосковый преобразователь СВЧ сигнала;

15 – выходной микрополосковый преобразователь СВЧ сигнала;

16 – малошумящий СВЧ усилитель;

17 – ответвитель СВЧ сигнала;

18 – фазовращатель;

a, b - распределение магнитной индукции в первом и втором зазоре магнитной системы соответственно.

Однокоординатный сенсор геомагнитных полей 1 (см. фиг.1) состоит из первичного модуля геомагнитных полей 2 и смесителя 3. Для обеспечения автоматизации обработки результатов измерений на выходе смесителя может быть подключен блок обработки выходных сигналов смесителя 3, включающий последовательно соединенные фильтр низких частот 4; цифровой частотомер 5; микропроцессор 6 с индикатором 7. На выходе смесителя измеряется разностная частота сигналов, которая является функцией измеряемого геомагнитного поля. Система обработки сигнала позволяет повысить оперативность геомагнитных измерений.

Первичный модуль однокомпонентного сенсора геомагнитных полей 2 (см. фиг.2) состоит из системы намагничивания, включающей три параллельно расположенные стальные пластины 8, в зазорах между которыми установлены четыре идентичных постоянных магнита 9, по два в каждом зазоре, присоединенные одноименными полюсами к внутренней стальной пластине, и двух идентичных генераторов, например плат автогенераторов 10, установленных в соответствующих зазорах стальных пластин 8 между постоянными магнитами 7 и присоединенных металлизированными основаниями к противоположным поверхностям внутренней стальной пластины 7. Система намагничивания служит для перевода резонаторов в режим насыщения при намагничивания резонаторов в противоположных направлениях.

Плата автогенератора 10 (см. фиг. 3) состоит из металлизированной диэлектрической подложки 11, на которой установлен пленочный ЖИГ резонатор, включающий ЖИГ пленку 12 выполненную в виде квадрата или диска на немагнитной подложке ГГГ 13, входного 14 и выходного 15 микрополосковых преобразователей СВЧ сигнала, расположенных на противоположных сторонах пленочного ЖИГ резонатора так, что оси микрополосковых преобразователей 14 и 15 совпадают с ортогональными осями пленочного ЖИГ резонатора. Между преобразователями включены малошумящий СВЧ усилитель 16, ответвитель СВЧ сигнала 17 и фазовращатель 18. Частоты возбуждения генераторов определяются собственными частотами ЖИГ резонаторов. Выходы плат автогенераторов 10 соединены с входом смесителя сигналов 3 (см. Фиг.1), выход смесителя 3 соединен с входом фильтра низких частот 4, выход фильтра низких частот соединен с входом цифрового измерителя частоты 5, выход измерителя частоты соединен с входом микропроцессора 6, к которому подключен индикатор 7.

Векторный измеритель геомагнитных полей (фиг. 4) состоит из трех идентичных однокомпонентных сенсоров геомагнитных полей 1 расположенных так, чтобы нормали к поверхностям стальных пластин 8 первичных модулей однокомпонентных сенсоров геомагнитных полей (см. фиг.2) совпадали с осями трехмерного базиса, выходы смесителей 3 однокомпонентных сенсоров геомагнитных полей соединены с входами блока обработки сигнала, включающего последовательно соединенные цифровой частотомер 5, микропроцессор 6 и индикаторное устройство 7.

Устройство работает следующим образом. Две противоположно ориентированные пары постоянных магнитов 9, установленные в зазорах стальных пластин 8, создают встречные магнитные потоки, которые суммируются во внутренней стальной пластине 8, далее потоки разделяются и замыкаются через зазоры стальных пластин 8. При этом в зазорах наводятся противоположно направленные магнитные поля , ориентированные по нормали к поверхностям пленочных ЖИГ резонаторов, расположенных на платах автогенераторов 9.

При нормальном намагничивании частоты первых резонансных мод пленочных ЖИГ резонаторов практически совпадают с частотами нижней границы спектра возбуждения прямых объемных МСВ , , где 1760Гс - намагниченность насыщения пленки ЖИГ, γ=2.83МГц/Э – гиромагнитное отношение, и - напряженности магнитных полей в первом и втором зазоре стальных пластин 8. Постоянные магниты 9 обеспечивают выполнение условия , что необходимо для полного насыщения пленочных ЖИГ резонаторов 12.

Частоты возбуждения ЖИГ резонаторов существенно зависят от внешних магнитных полей и от температуры окружающей среды. При наложении слабого геомагнитного поля , где , и , соответственно, нормальная и касательная составляющие геомагнитного поля, возникают сдвиги частот возбуждения пленочных ЖИГ резонаторов , и, соответственно, частот возбуждения автогенераторов. При этом нормальная составляющая вызывает противоположные сдвиги частот и , а касательная составляющая вызывает только отклонения векторов на пренебрежимо малые углы и , что практически не вызывает дополнительных сдвигов частот . При этом разностная частота связанна с величиной нормальной составляющей геомагнитного поля простым соотношением , а искомая компонента геомагнитного поля рассчитывается по формуле

(1)

Для выделения разностной частоты используется смеситель сигналов 2, на выходе которого возникает множество комбинационных частот и так далее. Для заграждения высокочастотных составляющих используется фильтр низких частот 3. Для измерения разностной частоты используется цифровой частотомер 4. Вычисления компоненты геомагнитного поля по формуле (1) осуществляется микропроцессором 6.

Существенно, что в предлагаемой конструкции устройства температурные сдвиги частот резонаторов практически не влияют на точность измерения геомагнитных полей, поскольку они имеют односторонний характер и полностью компенсируются при выделении разностной частоты. Установка плат автогенераторов на противоположных сторонах внутренней стальной пластины 8 существенно снижает разницу температур пленочных ЖИГ резонаторов 12 и постоянных магнитов 9, возникающей при резких изменениях температуры окружающей среды.

По сравнению с прототипом габариты однокомпонентного преобразователя геомагнитных полей снижены, как минимум, вдвое за счет уменьшения габаритов ЖИГ резонаторов и, соответственно габаритов магнитной системы, а также за счет компактного расположения генераторов в предлагаемой конструкции магнитной системы. Симметричная конструкция первичного модуля однокомпонентного сенсора геомагнитных полей обеспечивает стабильность измерений при наличии температурных градиентов, возникающих при быстром нагревании или охлаждении устройства.

Использование высокоточных цифровых методов измерения частоты повышает чувствительность измерителя геомагнитных полей. В частности, согласно расчетам по формуле (1), при измерении разностной частоты с точностью до 0,1Гц предел величины измеряемых полей составляет Тл, что сравнимо с чувствительностью СКВИД-магнетометров. Использование цифровых измерителей разностной частоты 5 обеспечивает хорошее сопряжение с микропроцессором. Использование микропроцессора 6 значительно сокращает время обработки результатов измерений.

Ниже приведен пример реализации изобретения. Пленочный резонатор (фиг.3) имеет габаритные размеры мм при толщине пленочной структуры ЖИГ-ГГГ 0,5мм. Габаритные размеры магнитной системы (фиг.2) составляют мм. В состав системы входят три стальные пластины с одинаковыми размерами мм и четыре неодимовые магнита марки N35 с размерами мм. В промежутках между магнитами расположены рабочие зазоры с размерами мм достаточные для размещения плат автогенераторов 10.

Постоянные магниты создают в зазорах стальных пластин 8 однородные магнитные поля, величина которых значительно превышает поле насыщения пленочного ЖИГ резонатора 12. Моделирование полей магнитной системы осуществлялось методом конечных элементов, реализованных в пакете программ Ansoft Maxwell SV. Исходными данными для расчета являлись геометрические размеры элементов магнитной системы, кривая намагничивания стали Ст.1010 и остаточная индукция неодимовых магнитов =1,2Тл. Результаты расчетов намагничивающих полей представлены на фиг.5, где кривыми a, b показано распределение магнитной индукции в первом и втором зазоре магнитной системы. На вставке фиг.5 показаны результаты моделирования магнитных потоков. Из сравнения кривых a и b на фиг.5 следует, что в обоих зазорах величины намагничивающих полей практически совпадают Э. Это означает, что при отсутствии внешних полей частоты пленочных ЖИГ резонаторов равны между собой 5329 МГц и, соответственно, разностная частота на выходе смесителя равна нулю. При наложении внешнего геомагнитного поля возникают противоположные сдвиги резонансных частот пропорциональные величине компоненты геомагнитного поля . Для примера, согласно формуле (1), разность частот возникающая при наложении поля Э составляет 5,6Гц.

Для измерения всех трех компонент вектора геомагнитного поля , а также для определения его величины и ориентации в точке измерений достаточно трех идентичных однокомпонентных сенсоров геомагнитных полей 2, ориентированных по осям трехмерного базиса, как показано на фиг.4. Величина геомагнитного поля , полярный и азимутальный углы относительно заданного базиса вычисляются микропроцессором 18 по формулам

(2)

Результаты вычислений выводятся на индикаторное устройство 19.

Предлагаемое изобретение обеспечивает автоматизацию обработки результатов измерений, что повышает оперативность геомагнитных измерений.

1. Однокомпонентный сенсор геомагнитных полей, содержащий два идентичных СВЧ генератора, каждый из которых включает частотно-задающий элемент в виде пленочного ЖИГ резонатора, входной и выходной преобразователи СВЧ сигнала, систему намагничивания пленочных резонаторов в противоположных направлениях, смеситель сигналов, входы которого соединены с выходами генераторов, отличающийся тем, что система намагничивания пленочных ЖИГ резонаторов представляет собой три параллельно расположенные стальные пластины, в зазорах между которыми установлены постоянные магниты, одноименные полюсы которых присоединены к обеим сторонам внутренней пластины, каждый генератор установлен на диэлектрической подложке с металлизированным основанием, генераторы размещены в зазорах системы намагничивания между магнитами и присоединены металлизированным основанием к противоположным сторонам внутренней стальной пластины, при этом пленки ЖИГ резонаторов выполнены в виде квадрата или диска, входные и выходные преобразователи СВЧ сигналов расположены на противоположных сторонах резонаторов и ориентированы вдоль ортогональных осей резонаторов.

2. Сенсор по п. 1, отличающийся тем, что дополнительно содержит на выходе смесителя сигналов последовательно включенные фильтр низких частот, цифровой измеритель частоты, микропроцессор и индикатор.



 

Похожие патенты:

Изобретение относится к области измерительной техники и может быть использовано для измерения температуры в магниторезонансной среде. Зонд 130 для измерения температуры для использования в магниторезонансной среде содержит удлиненную подложку 202, по меньшей мере одну электропроводящую трассу 200, 200a, 200b, 200a', 200b' с высоким сопротивлением, напечатанную по меньшей мере на одном термисторе 204, который расположен на подложке и электрически соединен с трассой.

Группа изобретений относится к медицинской технике, а именно к медицинским системам визуализации и радиотерапии. Реализованный с помощью компьютера способ управления адаптивной радиационной терапией, управляемой с помощью изображения в режиме реального времени по меньшей мере части области пациента, содержит этапы, на которых получают множество данных об изображениях в режиме реального времени, соответствующих двумерным (2D) изображениям магнитно-резонансной томографии (MRI), включающих в себя по меньшей мере часть области, выполняют оценку 2D поля движения по множеству данных об изображениях, выполняют аппроксимацию оценки трехмерного (3D) поля движения, включающей в себя применение модели преобразования к оценке 2D поля движения, при этом модель преобразования определяется путем: выполнения оценки 3D поля движения по меньшей мере по двум объемам данных о 3D изображениях, включающих в себя по меньшей мере часть области и полученных в течение первого периода времени; выполнения оценки 2D поля движения по данным о 2D изображениях, соответствующих по меньшей мере двум 2D изображениям, включающих в себя по меньшей мере часть области и полученных в течение первого периода времени, и определения модели преобразования с использованием уменьшения размерности по меньшей мере одного из: оцененного 3D поля движения и оцененного 2D поля движения; определяют по меньшей мере одно изменение в режиме реального времени по меньшей мере части области на основании аппроксимированной оценки 3D поля движения; и управляют терапией по меньшей мере части области с использованием определенного по меньшей мере одного изменения.

Изобретение относится к области радиосвязи. Техническим результатом является автоматическое инициирование сеанса обмена данными с целевым терминалом на основании обнаружения пространственной близости.

Изобретение относится к магнитно-резонансной томографии, а именно к фидуциальным маркерам в магнитно-резонансной томографии. Медицинский аппарат содержит узел магнитно-резонансной катушки, содержащий антенну магнитного резонанса с первым антенным и со вторым антенным участками для приема от фидуциального маркера данных о местоположении магнитного резонанса.

Изобретение относится к устройствам для измерения переменных магнитных величин и может быть использовано при проведении магнитных измерений. Держатель образца для СКВИД-магнитометра типа MPMS для исследования анизотропных свойств орторомбических монокристаллов содержит цилиндрическую трубку из органического материала, при этом дополнительно содержит размещенные внутри трубки выполненные из немагнитного материала прямоугольную пластину, два диска и прямую треугольную призму с прямым углом при одной из вершин ее основания, причем пластина противоположными краями жестко крепится к торцам первого и второго дисков, к центру пластины боковой гранью жестко крепится призма, к большой боковой грани которой жестко крепится образец.

Изобретение относится к испытаниям транспортных средств. В способе испытаний антиблокировочной системы тормозов на восприимчивость к электромагнитному полю устанавливают транспортное средство с антиблокировочной системой в испытательную камеру на ролики симулятора, ориентируют его относительно полеобразующей системы и реализуют ездовые циклы при воздействии на транспортное средство электромагнитного поля.

Изобретение относится к измерению магнитных полей, а в частности к способам и устройствам для точного обнаружения присутствия слабого рассеянного магнитного поля при наличии известного более сильного поля.

Изобретение относится к области магнитно-резонансной томографии (МРТ). Устройство радиочастотной (РЧ) принимающей катушки для использования в системе магнитно-резонансной (МР) томографии содержит РЧ-принимающую катушку, штекер для соединения РЧ-принимающей катушки с системой МР-томографии, сенсорное средство для восприятия присутствия магнитного поля системы МР-томографии, средство обнаружения для обнаружения, соединен ли штекер с системой МР-томографии, и средство предупреждения для генерирования предупреждения, когда сенсорное средство воспринимает присутствие магнитного поля системы МР-томографии и средство обнаружения обнаруживает, что штекер не соединен с системой МР-томографии.

Изобретение относится к магниторезонансной томографии. Система магниторезонансной томографии содержит магнит для генерирования основного магнитного поля с зоной томографирования и систему градиентных катушек.

Изобретение относится к способу использования листов из нетекстурированной электротехнической стали для железных сердечников двигателей и т.п., и более конкретно к способам прогнозирования потерь в железе листов из нетекстурированной электротехнической стали после резки.

Изобретение относится к области оборонной техники. Комплекс для оценки эффективности электромагнитной защиты бронеобъектов от средств поражения с неконтактным взрывным устройством содержит трубу, соединенную с источником сжатого воздуха, и элементы регулировки подачи воздуха.

Использование: для магнитно-резонансной (MR) визуализации. Сущность изобретения заключается в том, что участок тела, размещенный в объеме обследования MR-устройства, подвергается воздействию визуализирующей последовательности RF-импульсов и переключаемых градиентов магнитного поля.

Изобретение касается устройства для обнаружения магнитного поля. Полупроводниковое устройство содержит квантовый волновод в виде однородного проводящего элемента, выполненного из проводника или высокодопированного полупроводника, с областями истока и стока и размещенной между ними резонансной областью, включающей один квантовый резонатор или систему из двух последовательно установленных квантовых резонаторов, образованных сужениями квантового волновода, квантовые резонаторы выполнены с обеспечением бесстолкновительного режима движения электронов от истока к стоку, а также источник напряжения, соединенный с областью истока и областью стока электрическими контактам, и измерительное устройство в цепи источника напряжения, при этом в качестве характеристики квантовых резонаторов выбраны величины уровней их резонансных энергий Eres электрона; в качестве характеристики истока и стока выбраны величины энергии уровня Ферми EFs и EFd соответственно; при этом длину и диаметр одиночного резонатора выбирают из условия выполнения соотношений Eres>EFs+kBT или соотношения Eres<EFd-kBT, а в системе двух резонаторов их длины и диаметры первого и второго резонаторов выбраны из условия совпадения их уровней резонансной энергии (Eres1, Eres2) при выполнении соотношения EFd<Eres1=Eres2<EFs, или из условия различия уровней резонансной энергии (Eres1, Eres2) при одновременном выполнении условий: Eres1-Eres2>max[ΔEres1, ΔEres2], где ΔEres1, ΔEres2 - ширина первого и второго уровней резонансной энергии соответственно, где kB - постоянная Больцмана, Т - температура.

Изобретение относится к измерительной технике, представляет собой датчик слабых высокочастотных магнитных полей и может применяться в первую очередь в магнитометрии.

Изобретение относится к измерительной технике, представляет собой устройство и способ измерения направления и величины магнитных полей с применением магнитного резонанса и может применяться для обнаружения ферросодержащих тел и навигации по магнитному полю Земли.

Изобретение относится к измерительной технике, представляет собой устройство и способ измерения направления и величины магнитных полей с применением магнитного резонанса и может применяться для обнаружения ферросодержащих тел и навигации по магнитному полю Земли.

Изобретение относится к медицинской технике, а именно ортопедическому магнитно-резонансному томографу. .

Изобретение относится к измерительной технике и может быть использовано для измерения параметров переменных магнитных полей, таких как амплитуда и частота. .

Изобретение относится к области измерительной техники и интегральной электроники, а более конкретно к интегральным измерительным элементам направления и величины магнитных полей и магнитных потоков.

Изобретение относится к области измерения постоянного и переменного магнитных полей. .
Наверх