Способ приготовления базальтофибробетонной смеси



Владельцы патента RU 2667402:

Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный архитектурно-строительный университет" (ТГАСУ) (RU)

Изобретение относится к технологии производства дисперсно-армированных бетонных смесей для изготовления строительных изделий и конструкций. Согласно изобретению сначала готовят сухую бетонную смесь из крупного и мелкого заполнителей и 90% цемента, которую затворяют водой в количестве 40-50% от проектного объема. Из оставшихся 10% сухого цемента, базальтовых волокон, взятых в количестве 0,4-0,6% от общей массы цемента и оставшейся воды затворения готовят суспензию, смешивая все компоненты в высокоскоростном роторном смесителе. Приготовленную суспензию вводят в частично затворенную бетонную смесь и перемешивают в высокоскоростном роторном смесителе до однородного состояния. Для приготовления суспензии используют или всю оставшуюся воду затворения в количестве 60-50%, или 55-40% оставшейся воды затворения. В последнем случае в 5-10% оставшейся воды растворяют гиперпластификатор PowerFlow 1190, взятый в количестве 0,4-0,8% от общей массы цемента. Полученный водный раствор гиперпластификатора PowerFlow 1190 вводят в фибробетонную смесь на последнем этапе ее перемешивания. Технический результат - обеспечение высокой степени однородности базальтофибробетонной смеси, повышение прочностных характеристик бетона и стабильность прочностных показателей. 2 ил.

 

Настоящее изобретение относится к области производства строительных материалов, в частности, к технологии производства дисперсно-армированных бетонных смесей для изготовления строительных изделий и конструкций.

Из существующего уровня техники известен способ приготовления дисперсно-армированного раствора (патент RU 2191690, опубл. 27.10.2008), который включает в себя три этапа: перемешивание вяжущего с мелким заполнителем; к смеси вяжущего с мелким заполнителем добавляется минеральное волокно, диаметр и длина которого составляет 0,25-3 мкм и 0,25-2000 мкм соответственно, затем производится перемешивание в бетоносмесителе принудительного действия; на последнем этапе принудительного перешивания сухие компоненты постепенно смачиваются водой затворения. Недостатком этого способа является неравномерное распределение волокон в объеме бетонной смеси, что повышает показатели изменчивости прочности цементных материалов.

Известны бетонные смеси (патенты RU 2480428, опубл. 27.04.2013 г., RU 2355656, опубл. 20.05.2009 г, RU 2569140, опубл. 20.11.2015 г., RU 2609784 C1, опубл. 03.02.2017 г.), которые в качестве дисперсного армирования (фибры) содержат базальтовые волокна различной модификации. Способы приготовления таких бетонных смесей не отличаются по технологическим особенностям от стандартных методик. Все компоненты перемешиваются в бетоносмесителе. Различия состоят в составе бетонной смеси и наличии различных модификаторов. Недостатком этих способов является неравномерное распределение волокон в объеме бетонной смеси, что повышает показатели изменчивости прочности фибробетона и снижает класс бетона по прочности на сжатие и растяжение.

Введение микроармирующих компонентов, как органических, так и минеральных в бетонную смесь осложнено тем, что без учета природы поверхности волокон равномерно распределить их по объему смеси достаточно проблематично. С увеличением удельной поверхности фибры увеличивается склонность к адгезии отдельных волокон друг к другу, что приводит к образованию комков из переплетенных волокон (ежей), их неравномерному распределению по объему материала и существенному нарушению однородности структуры бетонной смеси. Стандартными механическими способами перемешивания компонентов осуществить качественное распределение базальтовых волокон в бетонной смеси не представляется возможным.

Известны способы приготовления базальтофибробетонной смеси из источника (Совершенствование технологии изготовления базальтофибробетона с повышенной однородностью / А.И. Кудяков, B.C. Плевков, К.Л. Кудяков, А.В. Невский, А.С. Ушакова // Строительные материалы. - 2015. - №10. - С. 44-47). В данном источнике задачу по введению волокон в бетонную смесь предлагается решить путем применения нескольких технологических приемов: введение волокон в сухую смесь, введение волокон в частично затворенную водой бетонную смесь, введение волокон в составе водного раствора поверхностно-активного вещества. Наиболее близким из перечисленных способов является способ приготовления базальтофибробетонной смеси с введением базальтовых волокон в частично затворенную водой бетонную смесь. Сначала перемешивают в сухом виде цемент, крупный и мелкий заполнители. Затем полученную сухую бетонную смесь частично затворяют водой в количестве 40% от проектного объема воды затворения. В частично затворенную водой бетонную смесь вводят базальтовые волокна в количестве 0,4-0,6% от общей массы цемента, и оставшуюся часть проектного объема воды затворения. После этого фибробетонную смесь перемешивают в высокоскоростном роторном смесителе до однородного состояния.

Недостатком данного способа является наличие «ежей», а в случае удовлетворительного распределения волокон в объеме фибробетонной смеси ухудшается сцепление волокон с цементным камнем, что приводит к снижению показателей изменчивости и/или прочности фибробетона.

Техническая проблема, решаемая изобретением, заключается в совершенствовании технологического процесса для обеспечения равномерного распределения волокон в объеме при приготовлении фибробетонной смеси и обеспечении уменьшения показателей изменчивости.

Технический результат заключается в получении базальтофибробетонной смеси с высокой степенью стабильности прочностных показателей. За счет этого обеспечивается повышение прочностных характеристик бетона, а именно класса бетона по прочности на сжатие и растяжение.

Указанный технический результат достигается следующим образом. По заявляемому способу, как и по способу-прототипу, сначала перемешивают в сухом виде цемент, крупный и мелкий заполнители. Полученную сухую бетонную смесь частично затворяют водой в количестве не менее 40% от проектного объема воды затворения. В частично затворенную водой бетонную смесь вводят базальтовые волокна в количестве 0,4-0,6% от общей массы цемента, и оставшуюся часть проектного объема воды затворения. Полученную фибробетонную смесь перемешивают в высокоскоростном роторном смесителе до однородного состояния.

В отличие от прототипа для приготовления сухой бетонной смеси берут 90% проектного количества цемента, а сухую бетонную смесь затворяют водой в количестве 40-50% от проектного объема воды затворения. Отличием является также то, что базальтовые волокна вводят в частично затворенную бетонную смесь в виде суспензии. Суспензию готовят из базальтовых волокон, оставшихся 10% сухого цемента и оставшейся воды затворения, которые смешивают в высокоскоростном роторном смесителе.

Для приготовления суспензии можно использовать весь оставшийся после частичного затворения бетонной смеси объем воды в количестве 60-50% или только 55-40% оставшейся воды затворения, а 5-10% использовать для приготовления водного раствора гиперпластификатора PowerFlow 1190, взятого в количестве 0,4-0,8% от общей массы цемента. В последнем случае полученный водный раствор гиперпластификатора PowerFlow 1190 вводят в фибробетонную смесь на последнем этапе ее перемешивания. Второй вариант характеризуется более стойким техническим результатом, а также увеличением подвижности бетонной смеси. Однако в обоих случаях обеспечивается повышение прочностных характеристик бетона, а именно класса бетона по прочности на сжатие и растяжение, при высокой степени стабильности прочностных показателей.

Технология приготовления фибробетонной смеси с механохимической активацией базальтовых волокон может быть реализована в двух вариантах исполнения:

1. Перемешивание крупного, мелкого заполнителей и 90% проектного количества цемента по массе в высокоскоростном роторном бетоносмесителе в течение 1 мин до достижения однородности смеси в сухом состоянии. Далее к сухой бетонной смеси добавляется вода затворения в количестве 40-50% от проектного ее количества и смесь перемешивается в бетоносмесителе в том же режиме в течение 2 минут. В смесь вводится предварительно приготовленная суспензия из 10% проектного количества цемента по массе, 60-50% проектного объема воды затворения (оставшейся) и базальтовых волокон в количестве 0,4-0,6%. Далее производится перемешивание смеси в бетоносмесителе в течение 5 минут.

2. После частичного затворения сухой бетонной смеси в смесь вводится суспензия, приготовленная из 55-40% оставшейся воды, 10% сухого цемента, и 0,4-0,6% от общей массы цемента базальтовых волокон. Для обеспечения проектной подвижности на последнем этапе перемешивания в фибробетонную смесь добавляется 5-10% проектного объема воды затворения с растворенным в нем гиперпластификатором Power Flow 1190 в количестве 0,4-0,8% от общей массы цемента.

Способ показан на конкретном примере

Базальтофибробетонная смесь изготавливается из следующих сырьевых материалов: портландцемент бездобавочный Цем I 42,5Н (ГОСТ 30515-2012); песок с модулем крупности 2,8 мм (ГОСТ 8736-93); щебень из гравия фракции 5-10 мм (ГОСТ 31424-2010); водопроводная вода (ГОСТ 23732-2011); базальтовое волокно (ТУ 5769-004-80104765-2008); гиперпластификатор PowerFlow 1190 (ТУ 5745-096-51552155-2011).

Проектирование составов фибробетонной смеси с маркой по подвижности П2 (по ГОСТ 7473-2010) проводилось по учитывающей межзерновую пустотность заполнителей методике, разработанной на кафедре СМиТ Томского ГАСУ (Кудяков, А.И. Комплексная модификация компонентов и оптимизация структуры бетонов / А.И. Кудяков, С.А. Лукьянчиков // Тезисы докладов Всесоюз. конф. «Фундаментальные исследования и новые технологии в строительном материаловедении». Ч. 4. Теория искусственных конгломератов и ее практическое значение / БТСМ. - Белгород, 1989. - С. 82). Был изготовлен состав фибробетонной смеси с базальтовыми волокнами, рассчитанный на 1 м бетонной смеси:

- портландцемент Цем I 42,5Н - 335 кг/м3;

- песок с модулем крупности 2,8 мм - 500 кг/м3;

- щебень из гравия фракции 5-10 мм - 1340 кг/м3;

- водопроводная вода - 215 кг/м3 (100% объема воды затворения)

- базальтовые волокна в количестве: 1,34 кг/м3 (0,4%), 1,67 кг/м3 (0,5%), 2,01 кг/м3 (0,6%).

Из полученного состава были изготовлены фибробетонные образцы, которые испытывались на прочность при сжатии и при растяжении. Для сравнения были изготовлены образцы без добавления базальтовых волокон.

На фиг. 1 представлены диаграммы прочности R при сжатии бетона без добавления базальтовых волокон (вариант (а)) и базальтофибробетона (вариант (б)) с разным содержанием базальтовых волокон μbf (0,4; 0,5; 0,6). На фиг. 2 - диаграммы прочности бетона R при растяжении для указанных выше бетонов.

Как видно из диаграмм, прочность образцов из базальтофибробетонной смеси в сравнении с базовым бетоном аналогичного состава без добавления базальтовых волокон выше при сжатии на 49-59%, а при растяжении на 27-40%. При этом коэффициент изменчивости прочностных характеристик фибробетонных образцов не превышал 4,1%, что свидетельствует об их удовлетворительной стабильности. Также зафиксировано увеличение значений относительных предельных деформации фибробетона при сжатии до 0,0031 и при растяжении до 0,00014.

Для второго варианта был изготовлен аналогичный предыдущему состав фибробетонной смеси с базальтовыми волокнами, рассчитанный на 1 м3 бетонной смеси, но с добавлением гиперпластификатора Power Flow 1190:

- портландцемент Цем I 42,5Н - 335 кг/м3;

- песок с модулем крупности 2,8 мм - 500 кг/м3;

- щебень из гравия фракции 5-10 мм - 1340 кг/м3;

- водопроводная вода - 215 кг/м3 (100% объема воды затворения)

- базальтовые волокна в количестве: 1,34 кг/м3 (0,4%), 1,67 кг/м3 (0,5%), 2,01 кг/м3 (0,6%).

- гиперпластификатор Power Flow 1190 в количестве: 1,34 кг/м3 (0,4%), 1,67 кг/м3 (0,5%), 2,01 кг/м3 (0,6%), 2,68 кг/м3 (0,8%).

Показатели прочности образцов, приготовленных из базальтофибробетонной смеси с добавлением гиперпластификатора, как показали эксперименты, находятся в тех же пределах, как и в предыдущем варианте. Но было отмечено, что стабильность прочностных показателей у этих образцов более высокая, чем в первом варианте: коэффициент изменчивости прочностных характеристик фибробетонных образцов составляет примерно 2,8%.

Установлено также, что фибробетонная смесь, приготовленная по заявляемому способу, в отличие от аналогов и прототипа, не содержит «ежей».

Способ приготовления базальтофибробетонной смеси, согласно которому сначала перемешивают в сухом виде цемент, крупный и мелкий заполнители, полученную сухую бетонную смесь частично затворяют водой в количестве не менее 40% от проектного объема воды затворения, затем в частично затворенную водой бетонную смесь вводят базальтовые волокна в количестве 0,4-0,6% от общей массы цемента и оставшуюся часть проектного объема воды затворения, после этого полученную смесь перемешивают в высокоскоростном роторном смесителе до однородного состояния, отличающийся тем, что для приготовления сухой бетонной смеси берут 90% проектного количества цемента, сухую бетонную смесь затворяют водой в количестве 40-50% от проектного объема воды затворения, а базальтовые волокна вводят в частично затворенную бетонную смесь в виде суспензии, для приготовления которой базальтовые волокна предварительно смешивают в высокоскоростном роторном смесителе с оставшимися 10% сухого цемента и оставшейся водой затворения в количестве 60-50% или в количестве 55-40%, при этом 5-10% оставшейся воды затворения используют для приготовления водного раствора гиперпластификатора PowerFlow 1190, взятого в количестве 0,4-0,8% от общей массы цемента, причем полученный водный раствор гиперпластификатора PowerFlow 1190 вводят в фибробетонную смесь на последнем этапе ее перемешивания.



 

Похожие патенты:
Изобретение относится к области строительства, а именно к способам приготовления бетонной смеси и строительных растворов, бетонов и конструкций и может быть использовано в технологии производства изделий и конструкций в сборном домостроении и в монолитном строительстве.
Изобретение относится к области строительства, а именно к способам приготовления бетонной смеси и строительных растворов, бетонов и конструкций, и может быть использовано в технологии производства изделий и конструкций в сборном домостроении и в монолитном строительстве.

Изобретение относится к полиуретановому связующему для композиционного материала на основе природного щебня и гравия из плотных горных пород, который может быть использован при строительстве и ремонте откосов железных и автомобильных дорог, берегоукрепительных сооружений, конусов насыпей, подходов к искусственным сооружениям, а также в производстве облицовочных строительных изделий - плиток, блоков, панелей.

Изобретение относится к отверждаемым органополисилоксановым композициям, способу их приготовления и применению для изготовления искусственных камней. Отверждаемая композиция для изготовления формованных изделий, содержащая (А1) смоляной компонент, состоящий из по меньшей мере одной органополисилоксановой смолы, которая состоит из звеньев приведенной формулы, компонент (А1) имеет среднемассовую молекулярную массу Mw от 500 до 11000 г/моль и среднечисленную молекулярную массу Mn от 500 до 5000 г/моль, а также полидисперсность (Mw/Mn) от 1 до 5, (А2) кремнийорганический компонент, состоящий из по меньшей мере одного кремнийорганического соединения, которое состоит из звеньев приведенной формулы, и (Б) по меньшей мере один наполнитель.

Изобретения относятся к области строительства и производства строительных материалов и могут быть использованы при производстве кирпича, тротуарной плитки и других мелкоштучных изделий, устройстве оснований, в том числе оснований дорог.

Изобретение относится к области ремонта и содержания покрытий в автодорожной отрасли и может быть применено при ремонте асфальтобетонных дорожных покрытий, изготовленных из различных асфальтобетонов.

Изобретение относится к способу набухания способных к набуханию полимерных микросфер. Способ набухания способных к набуханию полимерных микросфер включает изготовление вяжущего состава или вяжущего продукта, содержащего состав, содержащий (i) приведение водной суспензии, содержащей ненабухшие, способные к набуханию полимерные микросферы, в контакт с паром, непосредственно до и/или во время изготовления вяжущего состава; (ii) необязательно предварительное смачивание набухших полимерных микросфер; и (iii) включение набухших полимерных микросфер в вяжущий состав, где набухшие полимерные микросферы имеют средний диаметр, который составляет от 40 до 216 мкм, и водная суспензия необязательно дополнительно содержит добавку для вяжущего состава, и ненабухшие, способные к набуханию полимерные микросферы имеют средний диаметр, который составляет 100 мкм или меньше.

Настоящее изобретение относится к жаростойким бетонам. Состав для изготовления хромомагнезитового жаростойкого бетона, включающий связующее, хромомагнезитовый заполнитель, тонкомолотые наполнители и воду, содержит в качестве связующего коллоидный полисиликат натрия с силикатным модулем 6.5, полученный путем введения в 20%-ный водный раствор силиката натрия 16%-ного гидрозоля диоксида кремния при их соотношении 1:1,6, перемешивании при 100°C в течение 3,0 ч с выдержкой не более 0,5 ч, и в качестве тонкомолотого наполнителя – тонкомолотый хромомагнезит и тонкомолотый лом периклазохромитовых изделий при следующем соотношении компонентов, мас.%: хромомагнезитовый заполнитель фракции 0,18-7 мм 60-80, тонкомолотый хромомагнезит Sуд=2500-3000 см2/г 8-16, коллоидный нанодисперсный полисиликат натрия 5-12.5, тонкомолотый лом периклазохромитовых изделий Sуд=2500-3000 см2/г 7-11.5, вода из расчета В/Т 0.12-0.14.
Изобретение относится к производству сухих строительных смесей с пониженным пылеобразованием за счет использования в качестве супрессивного средства изоляционного масла и может быть использовано в строительстве и промышленности строительных материалов для изготовления сухих строительных смесей (ССС), кладочных и штукатурных растворов, а также составов для устройства полов, стяжек, заделки стыков, щелей и т.п.

Изобретение относится к промышленности строительных материалов и может быть использовано при изготовлении строительных изделий и конструкций из самоуплотняющегося бетона.

Изобретение относится к способу набухания способных к набуханию полимерных микросфер. Способ набухания способных к набуханию полимерных микросфер включает изготовление вяжущего состава или вяжущего продукта, содержащего состав, содержащий (i) приведение водной суспензии, содержащей ненабухшие, способные к набуханию полимерные микросферы, в контакт с паром, непосредственно до и/или во время изготовления вяжущего состава; (ii) необязательно предварительное смачивание набухших полимерных микросфер; и (iii) включение набухших полимерных микросфер в вяжущий состав, где набухшие полимерные микросферы имеют средний диаметр, который составляет от 40 до 216 мкм, и водная суспензия необязательно дополнительно содержит добавку для вяжущего состава, и ненабухшие, способные к набуханию полимерные микросферы имеют средний диаметр, который составляет 100 мкм или меньше.

Изобретение относится к области строительных материалов и касается панели для наружной обшивки со встроенной воздухо/водонепроницаемой мембраной. Цементная панель с, по меньшей мере, одной наружной облицовочной поверхностью содержит цементную сердцевину, по меньшей мере, один обшивочный лист и встроенную воздухо/водонепроницаемую мембрану, при этом обшивочный лист расположен между цементной сердцевиной и встроенной воздухо/водонепроницаемой мембраной, а встроенная воздухо/водонепроницаемая мембрана нанесена на наружную облицовочную поверхность и содержит полимерное вяжущее и карбонат кальция.

Изобретение относится к составу регулятора реологических свойств, к его применению и к составу сухой строительной смеси, содержащему регулятор, и может найти применение в композициях на основе неорганических вяжущих веществ.

Изобретение относится к способу получения композиции, ускоряющей отверждение, к применению композиции, ускоряющей отверждение, в строительных материалах, к смеси строительных материалов, содержащих композицию, ускоряющую отверждение.

Изобретение относится к области строительства, а именно к технологии приготовления бетонных смесей и изделий из них, и может быть использовано в монолитном строительстве.

Изобретение относится к композиции, включающей 5-50 мас. % гидрата силиката кальция, 10-60 мас.
Изобретение касается способов получения комплексных добавок для цементных бетонов. Способ получения комплексной добавки для бетона, предусматривающий последовательное растворение в 700 мл воды следующих компонентов: сода кальцинированная 1 г, метасиликат натрия 0,8 г, нитрит натрия 2 г, бакцид 2 мл, приготовление смеси следующих компонентов: триэтаноламин 500 мл, диэтаноламин 100 мл, синтамид-5 100 мл, керосин 5 мл, масло индустриальное И-20А 2 мл, соединение раствора и смеси с последующим их смешиванием.

Изобретение относится к композиции и к способу цементирования обсадной колонны в стволе буровой скважины, с использованием водной цементирующей композиции, включающей: (а) воду, (b) цементирующую композицию, включающую (i) гидравлический цемент, (ii) гидрофобно-модифицированный полимер, (iii) диспергатор и необязательно (iv) одну или многие другие добавки, обычно добавляемые в водные цементирующие композиции, применимые для цементирования обсадных колонн в стволах буровых скважин.

Изобретение относится к составу добавки для гидравлически схватывающихся составов, содержащей коллоидно-дисперсный препарат по меньшей мере одной водорастворимой соли многозарядного катиона металла, по меньшей мере одного соединения, способного высвобождать анион, который образует с многозарядным катионом металла труднорастворимую соль, и по меньшей мере одного полимерного диспергатора с анионными и/или анионогенными группами и простыми полиэфирными ответвлениями, к способу получения добавки, к строительной смеси, содержащей указанную добавку, и к применению указанной добавки.

Изобретение относится к области строительных материалов и может быть использовано для производства строительных растворов и безобжиговых строительных изделий, например фасадной плитки.

Изобретение относится к самоуплотняющимся смесям для высокопрочных особотяжелых бетонов плотностью от 3500 до 4500 кг/м3. Изобретение направлено на получение самоуплотняющейся особотяжелой бетонной смеси плотностью выше 3500 кг/м3, обладающей и высокой подвижностью, измеряемой осадкой стандартного конуса выше 28 см при расплыве стандартного конуса 65-75 см, и сегрегационной устойчивостью.
Наверх