Низкомолекулярные сополимеры моноэтиленненасыщенных карбоновых кислот и их применение в качестве ингибиторов солеотложения в водооборотных системах

Изобретение относится к способу получения водных растворов низкомолекулярных сополимеров моноэтиленненасыщенных карбоновых кислот с 3-4 атомами углерода и к их применению в качестве ингибиторов солеотложения в водооборотных системах и в теплоэнергетике. Способ получения полимерного ингибитора солеотложений осуществляют радикальной полимеризацией мономерных компонентов в смеси воды и органического растворителя. Проводят радикальную сополимеризацию акриловой, и/или метакриловой, и/или малеиновой, и/или фумаровой кислот, и/или аллилсульфокислоты, и/или их водорастворимые соли с концентрацией мономеров 10-30 мас.%, в качестве органического растворителя используют ацетонитрил, в качестве инициатора используют пероксосоединения в концентрации 0,1-1 мас.% без использования фосфор- и серосодержащих регуляторов молекулярной массы в режиме дозирования реагентов в реакционную массу, а после окончания полимеризации реакционную массу концентрируют путем упаривания органического растворителя. Технический результат – полученные полимеры могут быть использованы для предотвращения отложений солей даже в пересыщенных растворах солей кальция. 4 з.п. ф-лы, 1 табл.

 

Изобретение относится к способу получения водных растворов низкомолекулярных сополимеров моноэтиленненасыщенных карбоновых кислот с 3-4 атомами углерода, а также к их применению в качестве ингибиторов солеотложения в водооборотных системах и в теплоэнергетике.

Широкое и нарастающее применение ингибиторов солеотложения в теплоэнергетике является, в настоящее время, основным направлением в борьбе с отложением солей.

В патенте RU №2574395, кл. C08F 220/38, опубл. 10.02.2016 описаны сополимеры, содержащие группы карбоновой кислоты, сульфокислотные группы и полиалкиленоксидные группы, в качестве добавки к моющим и чистящим средствам, ингибирующей образование отложений. Описан метод получения сополимеров моноэтиленненасыщенной карбоновой кислоты с 3-8 атомами углерода, мономеров, содержащих сульфокислотные группы и неионогенные оксиалкильные мономеры, которые используются в средствах для мытья посуды, не содержащих фосфаты, и отличаются предпочтительными прикладными свойствами, в частности ингибированием образования отложений, и широкой применимостью в сфере машинного мытья посуды. Предлагаемые в изобретении сополимеры можно получать путем радикальной полимеризации мономеров, с применением регуляторов молекулярной массы - неорганических и органических серных соединений, что позволяет достигать средней молекулярной массы Mw от 2000 до 200000 Да, предпочтительно от 3000 до 100000 Да, особенно предпочтительно от 10000 до 50000 Да.

Применение серных соединений осложняет процесс синтеза ввиду их высокой токсичности. Также в изобретении отсутствуют данные по ингибирующей способности процесса осадкообразования.

Наиболее близким к изобретению является патент RU 2593591, кл. C08F 220/06, опубликован 10.08.2016 «Низкомолекулярные, содержащие фосфор полиакриловые кислоты и их применение в качестве ингибиторов отложений в водопроводящих системах».

В данном патенте описан метод получения низкомолекулярных полимеров, содержащих фосфор полиакриловые кислоты, способ их получения, а также их применение в качестве ингибиторов отложений в водопроводящих системах.

Водный раствор ингибитора получают полимеризацией акриловой кислоты в воде в приточном режиме с пероксодисульфатом в качестве инициатора, синтез ведут в присутствии гипофосфита. При этом:

(i) берут воду и

(ii) непрерывно добавляют акриловую кислоту в кислой, не нейтрализованной форме, водный раствор пероксодисульфата и водный раствор гипофосфита, и

(iii) после окончания притока акриловой кислоты к водному раствору добавляют основание, при этом содержание сомономеров не превышает 30 вес. %, в пересчете на общее содержание мономеров.

Максимально только 16% фосфора имеется в форме связанных на конце полимерной цепи фосфинатных и/или фосфонатных групп.

Однако данный ингибитор содержит фосфорные остатки, что сужает область их использования и не дает существенных преимуществ перед фосфонатами и другими реагентами на основе фосфора, которые используются в водооборотных системах.

Технической целью изобретения является устранение указанных недостатков.

Технический результат заключается в том, что достигается возможность получения водных растворов низкомолекулярных сополимеров моноэтиленненасыщенных карбоновых кислот с 3-4 атомами углерода и применения их в качестве эффективных ингибиторов солеотложения в водооборотных системах и теплоэнергетике.

Указанная техническая проблема решается, а технический результат достигается путем получения полимерного ингибитора солеотложений радикальной полимеризацией компонентов в смеси воды и органического растворителя. При этом проводят радикальную сополимеризацию акриловой и/или метакриловой и/или малеиновой и/или фумаровой кислот и/или аллилсульфокислоты и/или их водорастворимых солей с концентрацией мономеров 10-30 масс %, причем в качестве инициатора используют пероксосоединения в концентрации 0,1-1 масс % без использования фосфор- и серосодержащих регуляторов молекулярной массы в режиме дозирования реагентов в реакционную массу, а после окончания полимеризации реакционную массу концентрируют путем отгонки органического растворителя.

В качестве органического растворителя предпочтительно используют N,N-диметилформамид (ДМФА) и/или ацетонитрил и/или алифатические спирты с 1-4 атомами углерода, в частности - один из алифатических спиртов, метанол, этанол, пропанол, изопропанол, бутанол, или смеси этих растворителей.

В качестве неорганических пероксосоединений предпочтительно используют персульфаты, в частности - персульфат аммония или натрия или калия, и/или пероксид водорода.

В качестве органических пероксосоединений предпочтительно используют пероксид бензоила или азосоединения, например: 2,2'-азобисизобутиронитрил.

В качестве водорастворимых солей акриловой, метакриловой, малеиновой, фумаровой кислот или аллилсульфокислоты предпочтительно используют их соли натрия, калия или аммония.

Синтез проводится, предпочтительно при постоянном дозировании реагентов.

Значительное время основными реагентами в качестве ингибиторов солеотложения являлись фосфонаты и другие реагенты на основе фосфора.

В настоящее время в теплоэнергетику внедряются новые органические полимеры, а именно - полиакрилаты, поласпартаты, полималеаты и полисукцинаты, которые обладают высокими ингибирующими и диспергирующими свойствами, причем некоторые из них являются биоразлагаемыми.

Известно, что низкомолекулярные полиакриловые кислоты (Mw<10000 Да) и их соли ингибируют рост кристаллов солей жесткости и обладают высокой диспергирующей способностью, что обуславливает их применение в качестве ингибиторов отложений в промышленной обработке воды и при обессоливании морской воды.

Описанный выше способ позволяет получать раствор ингибитора путем радикальной полимеризации мономеров в смеси воды и органического растворителя в приточном дозирующем режиме с использованием в качестве инициаторов неорганических пероксосоединений, таких как персульфаты (персульфат аммония, натрия, калия), и пероксида водорода, органических пероксосоединений, таких как, пероксид бензоила, а также азосоединений, таких как 2,2'-азобисизобутиронитрил, а в качестве мономеров - акриловой и/или метакриловой и/или малеиновой и/или фумаровой кислот и/или аллилсульфокислоты и/или их водорастворимых солей с концентрацией мономеров 10-30 масс %. В качестве органических растворителей используют ДМФА, ацетонитрил, алифатические спирты с 1-4 атомами углерода, такие, как метанол, этанол, пропанол, изопропанол, бутанол, в смеси этих растворителей с водой, с созданием водно-органической среды, являющейся регуляторов молекулярной массы, в которой осуществляется процесс полимеризации. После окончания полимеризации реакционную массу концентрируют путем упаривания органического растворителя.

Таким образом получают водный раствор сополимеров кислоты со средним молекулярным весом 1000-10000 Да.

Описанный выше способ позволяет получить ингибитор, эффективно предотвращающий процесс осадкообразования малорастворимых солей щелочно-земельных металлов без использования токсичных серосодержащих и фосфорсодержащих регуляторов молекулярной массы.

Приведенные ниже примеры служат для более подробного пояснения практической реализации описываемого способа получения полимерного ингибитора солеотложений.

Пример 1.

Получение ингибитора 1

В реактор загружают акриловую кислоту, инициатор радикальной полимеризации и водно-органическую смесь. Берут 10 масс. ч. акриловой кислоты, 0.1 масс. ч. персульфата аммония и 90 масс. ч. водно-органической смеси, содержащей 80 масс. % этанола, остальное вода. Реакционную массу интенсивно перемешивают и нагревают до температуры кипения, выдерживают при кипении 1 час. После чего начинают упаривание. Полученную вязкую жидкость разбавляют водой до получения ~30% и нейтрализуют гидроксидом натрия. Выход полимера 98%.

Пример 2.

Получение ингибитора 2

В реактор загружают метакриловую кислоту, инициатор радикальной полимеризации и водно-органическую смесь. Берут 30 масс. ч. метакриловой кислоты, 0.5 масс. ч. персульфата аммония и 70 масс. ч. водно-органической смеси, содержащей 50 масс. % изопропилового спирта, остальное вода. Реакционную массу интенсивно перемешивают и нагревают до температуры кипения, выдерживают при кипении 1,5 часа. После чего начинают упаривание. Полученную вязкую жидкость разбавляют водой до получения ~30% и нейтрализуют аммиаком. Выход полимера 97%.

Пример 3.

Получение ингибитора 3

В реактор загружают 70 масс. ч. водно-органической смеси, содержащей 70 масс. % изобутилового спирта, нагревают до 80°C и начинают дозировать раствор персульфата калия, содержащий 1 масс. ч. соли и 5 частей воды, и раствор, содержащий 10 масс. ч. акриловой кислоты и 5 частей аллилсульфоната натрия и 10 масс. ч. воды. Дозирование производят одновременно в течение 1 часа. Далее выдерживают 2 часа при кипении, упаривают спирт и разбавляют водой до получения ~30%. Выход полимера 95%.

Пример 4.

Получение ингибитора 4

Поступают как в примере 1 с той разницей, что вместо акриловой кислоты берут смесь акриловой и малеиновой (1:1 по массе) кислот. Все остальные реагенты берутся в том же соотношении. Выход полимера 96%.

Пример 5.

Получение ингибитора 5

Поступают как в примере 3 с той разницей, что используют смесь аммониевую соль фумаровой и акриловой кислот в соотношении 1:2 по массе. Все остальные реагенты берутся в том же соотношении. Выход полимера 98%.

Пример 6

Получение ингибитора 6

Синтез ведут аналогично примеру 1. С той разницей, что вместо этилового спирта используют диметилформамид, а в качестве инициатора используют пероксид бензоила в количестве 0.4 масс. ч. Все остальные реагенты берутся в том же соотношении. Выход полимера 92%.

Пример 7

Получение ингибитора 7

Синтез ведут аналогично примеру 2. С той разницей, что вместо метакриловой кислоты используют ее натриевую соль, вместо изопропилового спирта используют ацетонитрил, а в качестве инициатора используют пероксид водорода. Выход полимера 96%.

Пример 8

Получение ингибитора 8

Поступают как в примере 1 с той разницей, что вместо акриловой кислоты берут метакриловую кислоту, в качестве инициатора 2,2'-азобисизобутиронитрил, вместо этилового спирта используют изопропиловый. Все остальные реагенты берутся в том же соотношении.

Процедура тестирования ингибирующей способности полученного описанным выше способом ингибитора. Выход полимера 91%.

Процесс ингибирования исследовали, используя в качестве базового протокол NACE Standard ТМ0374-2007 protocol. Для получения пересыщенного раствора карбоната кальция готовили два раствора в дистиллированной воде: рассол кальция (12,15 г/дм3 CaCl2⋅2H2O; 3,68 г/дм3 MgCl2⋅6H2O; NaCl 33 г/дм3) и бикарбонатный рассол (7,36 г NaHCO3; 33 г/дм3 NaCl). Состав рассолов для получения пересыщенного раствора сульфата кальция: кальциевый рассол: 11,10 г/дм3 CaCl2⋅2H2O, 7,50 г/л NaCl; сульфатный рассол: 10,66 г/дм3 Na2SO4, 7,50 NaCl.

При смешении этих рассолов в объемном соотношении 1:1 получали пересыщенные растворы карбоната или сульфата кальция. Пересыщенные растворы карбоната или сульфата кальция с заранее внесенным количеством ингибитора выдерживали 24 часа при 71°C, охлаждали и определяли остаточное содержание кальция.

Эффективность испытуемых ингибиторов определяли в виде процента ингибирования

I=100⋅([Са]ехр-[Ca]fin)/([Ca]init-[Ca]fin]),

где

- [Са]ехр - концентрация кальция в фильтрате в присутствии ингибитора по прошествии 24 часов обработки;

- [Ca]fin - концентрация кальция в фильтрате в отсутствии ингибитора по прошествии 24 часов обработки;

- [Ca]init - начальная концентрация кальция.

Исследование молекулярно-массового распределения образцов полимерных ингибиторов 1-8.

Подготовка образцов

Исходные образцы №№1-8 растворяли в элюенте, конц. 2 мг/мл, фильтровали через мембранный фильтр Spartan с размером пор 0.45 мкм.

Описание метода и прибора

Анализ проводили на жидкостном хроматографе Agilent 1200 в режиме гель-проникающей хроматографии (ГПХ). Прибор снабжен рефрактометрическим детектором, колонкой PLaquagelOHmixed (Agilent), системой съема и обработки данных ChemStation 1200.

Температура колонки 25°C, элюент - 0.1М NaNO3 (рН доведен до 7.5 раствором NaOH), скорость потока 0.8 мл/мин. Калибровку прибора проводили по стандартам полиэтиленгликоль и полиэтиленоксид Мр от 300 до 44000 Да (Waters и Merck).

В таблице 1 приведены результаты тестирования ингибирующей способности синтезированных полимеров

Настоящее изобретение может быть использовано для предотвращения отложений солей в водооборотных системах на предприятиях химической, нефтехимической, металлургической промышленности и жилищно-коммунального хозяйства.

1. Способ получения полимерного ингибитора солеотложений, заключающий в том, что проводят радикальную полимеризацию компонентов в смеси воды и органического растворителя, отличающийся тем, что проводят радикальную сополимеризацию акриловой, и/или метакриловой, и/или малеиновой, и/или фумаровой кислот, и/или аллилсульфокислоты, и/или их водорастворимые соли с концентрацией мономеров 10-30 мас.%, в качестве органического растворителя используют ацетонитрил, в качестве инициатора используют пероксосоединения в концентрации 0,1-1 мас.% без использования фосфор- и серосодержащих регуляторов молекулярной массы в режиме дозирования реагентов в реакционную массу, а после окончания полимеризации реакционную массу концентрируют путем упаривания органического растворителя.

2. Способ получения по п. 1, отличающийся тем, что в качестве неорганических пероксосоединений используют персульфаты, в частности персульфат аммония, или натрия или калия, и/или пероксид водорода.

3. Способ получения по п. 1, отличающийся тем, что в качестве органических пероксосоединений используют пероксид бензоила или азосоединения, например 2,2'-азобисизобутиронитрил.

4. Способ получения по п. 1, отличающийся тем, что в качестве водорастворимых солей акриловой, метакриловой, малеиновой, фумаровой кислот или аллилсульфокислоты используют их соли натрия, калия или аммония.

5. Способ получения по п. 1, отличающийся тем, что синтез проводится при постоянном дозировании реагентов.



 

Похожие патенты:

Изобретение относится к способам получения гомополимеров на основе диаллиламина, в частности к способу получения поли-N,N-диметил-3,4-диметиленпирролидиний хлорида. .

Изобретение относится к способу получения не подвергавшихся сдвиговой деформации высокомолекулярных высокоразветв- ленных водорастворимых полимеров, используемых в качестве флокулянтов.

Изобретение относится к способу полимеризации акриловой кислоты с самой собой или с другими по меньшей мере однократно этилен-ненасыщенными соединениями, причем в качестве исходного вещества используют полученные путем отделения из суспензии S ее кристаллов в маточнике кристаллы акриловой кислоты, которые получают с помощью процесса разделения для очистительного отделения кристаллов акриловой кислоты из суспензии S ее кристаллов в маточнике с применением устройства, включающего гидравлическую промывочную колонну, имеющую обладающее симметрией вращения вокруг проходящей сверху вниз продольной оси рабочее пространство, ограниченное цилиндрической стенкой и двумя концами, лежащими на оси симметрии противоположно друг другу, причем при запуске процесса разделения для первоначального формирования слоя кристаллов в рабочем пространстве контур циркуляции расплава кристаллов, включающий в себя пространство расплава кристаллов, а также рабочее пространство не заполненной ранее промывочной колонны сначала заполняют стартовой жидкостью AT, содержащей акриловую кислоту, таким образом, чтобы уровень заполнения рабочего пространства стартовой жидкостью AT по меньшей мере был выше выводного устройства, затем продолжают заполнение промывочной колонны, для чего насосом P2 подают поток ST* суспензии S от источника QS по подающим соединениям E1, E2 через распределительное пространство и через проходы U в рабочее пространство промывочной колонны, а от выведенного при этом через фильтровальные трубы из промывочной колонны потока отработанного маточника SM* как источника QT* при необходимости подающим насосом P3 ведут часть потока как поток регуляторного маточника SL* по подающим соединениям C1, C2 через распределительное пространство и проходы U и/или непосредственно в рабочее пространство промывочной колонны и продолжают это по меньшей мере настолько долго, пока не наступит момент tS, в который разность давлений PD=PK-PV, где PK - это давление, в каждом случае имеющееся в произвольно выбранном месте в пространстве расплава кристаллов в определенный момент подачи потока ST*, и PV - это в каждом случае давление, имеющееся в произвольно выбранном месте в распределительном пространстве в тот же момент времени, более не возрастает в зависимости от длительности подачи потока ST* и не остается постоянной, а резко падает, причем с соблюдением того условия, что до наступления момента tS средняя поверхностная нагрузка на фильтры F, рассчитанная из среднего арифметического значения в целом за время подачи потока ST* через фильтры F фильтровальных труб до данного момента времени текущего потока отработанного маточника SM*, разделенного на общую площадь всех фильтров F, составляет не более 80 м3/(м2⋅ч), содержащая акриловую кислоту стартовая жидкость AT представляет собой такую жидкость, при охлаждении которой до запуска кристаллизации осаждающиеся из нее кристаллы представляют собой кристаллы акриловой кислоты, и между температурой кристаллизации TKB этих кристаллов акриловой кислоты в стартовой жидкости AT, указанной в градусах Цельсия, и температурой TS суспензии S потока ST*, указанной в градусах Цельсия, выполняется соотношение TKB≤TS+15°C.
Изобретение относится к суперабсорбирующим полимерным смолам и способам их получения. Предложена суперабсорбирующая акрилатная смола с включенными в нее частицами, выбранными из диоксида кремния, оксида титана, оксида алюминия и их комбинаций и обладающими следующими свойствами i)-ii): i) величина удельной площади поверхности по БЭТ составляет в интервале 300-1500 м2/г, ii) степень пористости составляет 50% или более.
Изобретение относится к способам получения супервпитывающих полимеров. Предложен способ получения супервпитывающего полимера, включающий а) проведение для композиции мономера, содержащей (мет)акриловую кислоту и инициатор полимеризации, термической полимеризации или фотополимеризации с получением полимерного гидрогеля, b) высушивание полимерного гидрогеля, с) размалывание высушенного полимерного гидрогеля до размера частиц 150-850 мкм, d) добавление к размолотому полимерному гидрогелю частиц, характеризующихся i) площадью удельной поверхности согласно методу БЭТ в диапазоне от 300 до 1500 м2/г и ii) пористостью, составляющей 50% и более, и поверхностного сшивателя и е) проведение реакции поверхностного сшивания.

Изобретение относится к способу получения терминальной группы у полимера. Способ обеспечения терминальной функциональной группы у полимера включает взаимодействие терминально активного полимера, который содержит полиеновое мономерное звено, с α,β-этиленненасыщенным соединением, имеющим общую формулу (I) где каждый R независимо представляет собой атом водорода или С1-С10-алкильную группу, М представляет собой элемент 2-13 групп, у и z являются целыми числами при условии, что z не равен нулю и сумма у+z равна валентности М, и каждый X независимо представляет собой R1, OR1, OC(O)R1, C(O)OR1 или NR12, где каждый R1 независимо представляет собой С1-С30 алкильную группу, тем самым обеспечивая указанную терминальную функциональную группу у указанного полимера.

Настоящее изобретение относится к применению стабильных кислотных форм полиакрилатов в качестве вспомогательных веществ для переработки минерального сырья. Описана композиция для применения в переработке минерального сырья, содержащая полимер, включающий по меньшей мере одну карбоновую кислоту, и наполнитель, выбранный из группы, состоящей из каолина, талька, глины, белой сажи, гидроксида алюминия, диоксида титана, карбоната кальция, кальцита, мрамора и их смесей, причем указанный полимер, включающий по меньшей мере одну карбоновую кислоту, представляет собой гомополимер акриловой кислоты или сополимер акриловой кислоты и ненасыщенного мономера, выбранного из группы, состоящей из малеиновой кислоты, фумаровой кислоты, малеинового ангидрида и их комбинаций, и где указанный полимер в кислотной форме и является не нейтрализованным, обладает молекулярной массой (Mw) от 1000 до 10000 г/моль и характеризуется лучшими реологическими характеристиками в минеральных пульпах по отношению к контрольному полимеру сравнительной карбоксильной композиции, молекулярной массой и полидисперсностью, где контрольный полимер представляет собой полностью нейтрализованный полимер.

Изобретение относится к получению суперабсорбирующего полимера полиакриловой кислоты на основе полученной из биологического сырья акриловой кислоты. Композиция суперабсорбирующего полимера получена из акриловой мономерной композиции, при этом указанная акриловая мономерная композиция состоит из акриловой кислоты, производных акриловой кислоты или их смесей, при этом указанная композиция акриловой кислоты содержит, по меньшей мере, приблизительно 98 мас.% акриловой кислоты, производных акриловой кислоты или их смесей и при этом часть оставшихся примесей в указанной композиции акриловой кислоты представляет собой молочную кислоту, производные молочной кислоты или их смеси, причем указанная композиция для суперабсорбирующего полимера получена с помощью способа (I), включающего стадию, на которой: а.

Изобретение относится к способу получения полимера (мет)акриловой кислоты без использования растворителя, способного генерировать летучие органические соединения.

Изобретение относится к низкомолекулярным фосфорсодержащим полиакриловым кислотам, водным растворам полимеров акриловой кислоты, способу их получения и их применению в качестве диспергаторов.
Изобретение относится к низкомолекулярным полиакриловым кислотам и их применению в качестве диспергаторов. Способ получения водных растворов полимеров акриловой кислоты со среднемассовой молекулярной массой от 3500 до 12000 г/моль осуществляют путем полимеризации акриловой кислоты в режиме питания с использованием радикального инициатора в присутствии гипофосфита в воде в качестве растворителя, при этом: (i) загружают воду и при необходимости один или несколько этиленненасыщенных сомономеров, (ii) непрерывно подают акриловую кислоту в кислотной ненейтрализованной форме, при необходимости один или несколько этиленненасыщенных сомономеров, водный раствор радикального инициатора и водный раствор гипофосфита, (iii) по окончании подачи акриловой кислоты к водному раствору добавляют основание, причем содержание сомономеров в пересчете на общее содержание мономеров не превышает 30 мас.%, способ отличается тем, что водный раствор гипофосфита подают в течение общего времени подачи, состоящего из трех следующих один за другим промежутков времени ΔtI, ΔtII и ΔtIII, причем средняя скорость подачи в течение второго промежутка времени ΔtII выше значений средней скорости подачи в течение первого и третьего промежутков времени ΔtI и ΔtIII.

Изобретение относится к области синтеза полимеров акрилатного типа и может быть использовано для получения гидрогелей (суперабсорбентов), флокулянтов, детергентов, в качестве основы для создания новых лекарственных форм, различных композитов и материала для первопорационных разделительных мембран.

Группа изобретений может быть использована в области добычи нефти и газа, при обработке жидких отходов для нейтрализации растворенного кислорода для их использования в системе поддержания пластового давления.

Изобретение относится к технологиям обработки воды для предотвращения образования накипных и солевых отложений. Способ получения средства для стабилизационной обработки воды включает обработку смолы анионита в хлор-форме водным раствором карбоната или гидрокарбоната натрия с концентрацией 4 мас.%.

Изобретение относится к способу эксплуатации водоумягчительной установки с автоматическим разбавительным устройством. Способ эксплуатации водоумягчительной установки (1) с автоматическим разбавительным устройством (19) заключается в том, что поступающий поток Vroh сырой воды подразделяется на первый частичный поток который умягчается, и второй частичный поток который не умягчается, и оба частичных потока Vteil2 объединяются в поток Vverschnitt смешанной воды, причем доли Ateil2 обоих частичных потоков в потоке Vverschnitt смешанной воды так регулируются автоматическим разбавительным устройством (19), что получается заданная жесткость SW в потоке Vverschnitt смешанной воды, причем регулируемые доли Ateil2 обоих частичных потоков рассчитываются по жесткости Hroh сырой воды и жесткости Hweich умягченной воды, и величина жесткости Hroh сырой воды выводится из проводимости LFroh сырой воды, проводимость LFweich умягченной воды измеряется датчиком (9а) электропроводности в умягченном первом частичном потоке и проводимость LFverschnitt смешанной воды измеряется датчиком (9b) электропроводности в потоке Vverschnitt смешанной воды, причем определяются доли Ateil2 частичных потоков в потоке Vverschnitt смешанной воды, и проводимость LFroh сырой воды рассчитывается из измеренной проводимости LFweich умягченной воды, измеренной проводимости LFverschnitt смешанной воды и рассчитанных долей Ateil2 частичных потоков.

Изобретение может быть использовано в горнорудной, перерабатывающей промышленности, в коммунальном хозяйстве и энергетике при очистке минерализованных сульфатсодержащих вод с высокой жесткостью.

Изобретение может быть использовано для безреагентной очистки воды в сельском хозяйстве, растениеводстве, пищевой промышленности. Заявленный способ обработки воды включает комбинированное физическое воздействие, в котором используют ультразвуковые колебания и вращающиеся противоположно направленные электромагнитные поля.

Изобретение относится к химическим средствам обработки воды из природных источников и может быть использовано в питьевом водоснабжении в быту или в полевых условиях.
Изобретение относится к химическим составам, используемым для удаления солей жесткости с твердой поверхности. Предложена композиция следующего состава, мас.

Изобретение относится к вспомогательным устройствам для систем очистки и/или обессоливания жидкости, преимущественно воды для бытового и/или питьевого водоснабжения, предназначенным для использования в бытовых и/или промышленных условиях, на дачных и садовых участках.

Изобретение относится к технике получения насыщенного водяного пара. Способ подготовки питательной воды для змеевиковых парогенераторов низкого давления заключается в том, что в питательную воду добавляют химические реагенты, при этом в питательную воду добавляют два химических реагента: АМИНАТ™КО-2 для дообескислороживания питательной воды и АМИНАТ™КО-3п для предотвращения накипеобразования и корректировки рН питательной воды, при этом дозу химического реагента АМИНАТ™КО-2 рассчитывают по формуле: DКО-2=8×О2+i, мг/дм3, где О2 - содержание кислорода в питательной воде в мг/дм3; i - избыток реагента АМИНАТ™КО-2, мг/дм3, который составляет в питательной воде - в пределах 5-15 мг/дм3, а в котловой воде - в пределах 10-25 мг/дм3, а дозу химического реагента АМИНАТ™КО-3п рассчитывают по формуле: DКО-3П=186×(Жпит.в-Жост.)+6,7СFe, мг/дм3, где: Жпит.в.
Наверх